Higher Engineering Mathematics

(Greg DeLong) #1
684 FOURIER SERIES

Mean value=

area
length of base


1
2 π

(
2 π
p

)∑p

k= 1

yk≈

1
p

∑p

k= 1

yk

However,a 0 = mean value off(x) in the range
0to2π

Thus a 0 ≈


1
p

∑p

k= 1

yk (1)

Similarly,an=twice the mean value off(x) cosnx
in the range 0 to 2π,

thus an≈

2
p

∑p

k= 1

ykcosnxk (2)

andbn=twice the mean value off(x) sinnxin the
range 0 to 2π,

thus bn≈

2
p

∑p

k= 1

yksinnxk (3)

Problem 1. The values of the voltagevvolts at
different moments in a cycle are given by:

θ◦(degrees) V(volts)
30 62
60 35
90 − 38
120 − 64
150 − 63
180 − 52
210 − 28
240 24
270 80
300 96
330 90
360 70

Draw the graph of voltageVagainst angleθand
analyse the voltage into its first three constituent
harmonics, each coefficient correct to 2 decimal
places.

The graph of voltageVagainst angleθis shown in
Fig. 73.2. The range 0 to 2πis divided into 12 equal


intervals giving an interval width of

2 π
12

, i.e.

π
6

rad
or 30◦. The values of the ordinatesy 1 ,y 2 ,y 3 ,...are
62, 35,−38,...from the given table of values. If a
larger number of intervals are used, results having

y 1
y 2

y 3 y 4 y 5 y 6

y 7

y 8

y 9 y 11 y 12

y 10

270 360 degrees

90 180

80
60
40
20

0
− 20
− 40
− 60
− 80

Voltage (volts)
θ

Figure 73.2

a greater accuracy are achieved. The data is tabulated
in the proforma shown in Table 73.1, on page 685.

From equation (1),a 0 ≈

1
p

∑p

k= 1

yk=

1
12

(212)

= 17 .67 (sincep=12)

From equation (2),an≈

2
p

∑p

k= 1

ykcosnxk

hence a 1 ≈

2
12

(417.94)= 69. 66

a 2 ≈

2
12

(−39)=− 6. 50

and a 3 ≈

2
12

(−49)=− 8. 17

From equation (3),bn≈

2
p

∑p

k= 1

yksinnxk

hence b 1 ≈

2
12

(− 278 .53)=− 46. 42

b 2 ≈

2
12

(29.43)= 4. 91

and b 3 ≈

2
12

(55)= 9. 17

Substituting these values into the Fourier series:

f(x)=a 0 +

∑∞

n= 1

(ancosnx+bnsinnx)

gives: v= 17. 67 + 69 .66 cosθ− 6 .50 cos 2θ

− 8 .17 cos 3θ+··· − 46 .42 sinθ

+ 4 .91 sin 2θ+ 9 .17 sin 3θ+··· (4)
Free download pdf