684 FOURIER SERIES
Mean value=
area
length of base
≈
1
2 π
(
2 π
p
)∑p
k= 1
yk≈
1
p
∑p
k= 1
yk
However,a 0 = mean value off(x) in the range
0to2π
Thus a 0 ≈
1
p
∑p
k= 1
yk (1)
Similarly,an=twice the mean value off(x) cosnx
in the range 0 to 2π,
thus an≈
2
p
∑p
k= 1
ykcosnxk (2)
andbn=twice the mean value off(x) sinnxin the
range 0 to 2π,
thus bn≈
2
p
∑p
k= 1
yksinnxk (3)
Problem 1. The values of the voltagevvolts at
different moments in a cycle are given by:
θ◦(degrees) V(volts)
30 62
60 35
90 − 38
120 − 64
150 − 63
180 − 52
210 − 28
240 24
270 80
300 96
330 90
360 70
Draw the graph of voltageVagainst angleθand
analyse the voltage into its first three constituent
harmonics, each coefficient correct to 2 decimal
places.
The graph of voltageVagainst angleθis shown in
Fig. 73.2. The range 0 to 2πis divided into 12 equal
intervals giving an interval width of
2 π
12
, i.e.
π
6
rad
or 30◦. The values of the ordinatesy 1 ,y 2 ,y 3 ,...are
62, 35,−38,...from the given table of values. If a
larger number of intervals are used, results having
y 1
y 2
y 3 y 4 y 5 y 6
y 7
y 8
y 9 y 11 y 12
y 10
270 360 degrees
90 180
80
60
40
20
0
− 20
− 40
− 60
− 80
Voltage (volts)
θ
Figure 73.2
a greater accuracy are achieved. The data is tabulated
in the proforma shown in Table 73.1, on page 685.
From equation (1),a 0 ≈
1
p
∑p
k= 1
yk=
1
12
(212)
= 17 .67 (sincep=12)
From equation (2),an≈
2
p
∑p
k= 1
ykcosnxk
hence a 1 ≈
2
12
(417.94)= 69. 66
a 2 ≈
2
12
(−39)=− 6. 50
and a 3 ≈
2
12
(−49)=− 8. 17
From equation (3),bn≈
2
p
∑p
k= 1
yksinnxk
hence b 1 ≈
2
12
(− 278 .53)=− 46. 42
b 2 ≈
2
12
(29.43)= 4. 91
and b 3 ≈
2
12
(55)= 9. 17
Substituting these values into the Fourier series:
f(x)=a 0 +
∑∞
n= 1
(ancosnx+bnsinnx)
gives: v= 17. 67 + 69 .66 cosθ− 6 .50 cos 2θ
− 8 .17 cos 3θ+··· − 46 .42 sinθ
+ 4 .91 sin 2θ+ 9 .17 sin 3θ+··· (4)