THE COMPLEX OR EXPONENTIAL FORM OF A FOURIER SERIES 697L
From equation (17) above,cn=−j
2
nπ( 1 −cosnπ)Whenn=1,
c 1 =−j2
(1)π( 1 −cosπ)=−j2
π(
1 −(−1))
=−j 4
πWhenn=2,
c 2 =−j2
2 π( 1 −cos 2π)=0;in fact, all even values ofcnwill be zero.
Whenn=3,
c 3 =−j2
3 π( 1 −cos 3π)=−j2
3 π( 1 −(−1))=−j 4
3 πBy similar reasoning,
c 5 =−j 4
5 π,c 7 =−j 4
7 π, and so on.Whenn=−1,
c− 1 =−j2
(−1)π( 1 −cos(−π))=+j2
π( 1 −(−1))=+j 4
πWhenn=−3,
c− 3 =−j2
(−3)π( 1 −cos(− 3 π))=+j2
3 π( 1 −(−1))=+j 4
3 πBy similar reasoning,
c− 5 =+j 4
5 π,c− 7 =+j 4
7 π, and so on.Since the waveform is odd,c 0 =a 0 = 0.
From equation (18) above,
f(x)=∑∞n=−∞−j2
nπ( 1 −cosnπ)ejnxHence,
f(x)=−
j 4
πejx−j 4
3 πej^3 x−j 4
5 πej^5 x−j 4
7 πej^7 x−···+j 4
πe−jx+j 4
3 πe−j^3 x+j 4
5 πe−j^5 x+j 4
7 πe−j^7 x+···=(
−j 4
πejx+j 4
πe−jx)+(
−j 4
3 πe^3 x+j 4
3 πe−^3 x)+(
−j 4
5 πe^5 x+j 4
5 πe−^5 x)
+···=−j 4
π(
ejx−e−jx)
−j 4
3 π(
e^3 x−e−^3 x)−j 4
5 π(
e^5 x−e−^5 x)
+···=4
jπ(
ejx−e−jx)
+4
j 3 π(
e^3 x−e−^3 x)+4
j 5 π(
e^5 x−e−^5 x)
+···by multiplying top and bottom byj=8
π(
ejx−e−jx
2 j)
+8
3 π(
ej^3 x−e−j^3
2 j)+8
5 π(
ej^5 x−e−j^5 x
2 j)+···by rearranging=8
πsinx+8
3 πsin 3x+8
3 xsin 5x+···from equation (4), page 690i.e.f(x)=8
π(
sinx+1
3sin 3x+1
5sin 5x+1
7sin 7x+···)Hence,f(x)=∑∞n=−∞−j2
nπ( 1 −cosnπ)ejnx≡8
π(
sinx+1
3sin 3x+1
5sin 5x+1
7sin 7 x+···)