702 FOURIER SERIES
Imaginary axis
024 Real axis
ω = 2 rad/s
ω = 2 rad/s
Figure 74.10
(b) From equation (3), page 690,
cosθ=
1
2
(
ejθ +e−jθ
)
Hence, v=8 cos( 2 t− 1. 5 )
= 8
[
1
2
(
ej(^2 t−^1.^5 )+e−j(^2 t−^1.^5 )
)]
=4ej(2t−^1 .5)+4e−j(2t−^1 .5)
i.e. v=4e^2 te−j1.5+4e−j^2 tej1.5
This represents a phasor of length 4 and phase
angle−1.5 radians rotating anticlockwise (i.e. in
the positive direction) with an angular velocity
of 2 rad/s, and another phasor of length 4 and
phase angle+1.5 radians and rotating clockwise
(i.e. in the negative direction) with an angular
velocity of 2 rad/s. Figure 74.11 shows the two
phasors.
Imaginary axis
ω = 2 rad/s
ω = 2 rad/s
1.5 rad
1.5 rad Real axis
4
4
0
Figure 74.11
Problem 8. Determine – the pair of phasors
that can be used to represent the third harmonic
v=8 cos 3t−20 sin 3t
Using cost=
1
2
(
ejt+e−jt
)
and sint=
1
2 j
(
ejt−e−jt
)
from page 690
gives: v=8 cos 3t−20 sin 3t
= 8
[
1
2
(
ej^3 t+e−j^3 t
)
]
− 20
[
1
2 j
(
ej^3 t−e−j^3 t
)
]
=4ej^3 t+4e−j^3 t−
10
j
ej^3 t+
10
j
e−j^3 t
=4ej^3 t+4e−j^3 t−
10(j)
j(j)
ej^3 t+
10(j)
j(j)
e−j^3 t
=4ej^3 t+4e−j^3 t+ 10 jej^3 t− 10 je−j^3 t
sincej^2 =− 1
=( 4 +j 10 )ej^3 t+(4−j10) e−j^3 t
(4+j10)=
√
42 + 102 ∠tan−^1
(
10
4
)
= 10. 77 ∠ 1. 19
and (4−j10)
= 10. 77 ∠− 1. 19
Hence,v=10.77∠1.19+10.77∠−1.19
Thusvcomprises a phasor 10.77∠1.19 rotating anti-
clockwise with an angular velocity if 3 rad/s, and
a phasor 10.77∠−1.19 rotating clockwise with an
angular velocity of 3 rad/s.