702 FOURIER SERIES
Imaginary axis
024 Real axisω = 2 rad/sω = 2 rad/sFigure 74.10
(b) From equation (3), page 690,
cosθ=1
2(
ejθ +e−jθ)Hence, v=8 cos( 2 t− 1. 5 )= 8[
1
2(
ej(^2 t−^1.^5 )+e−j(^2 t−^1.^5 ))]=4ej(2t−^1 .5)+4e−j(2t−^1 .5)i.e. v=4e^2 te−j1.5+4e−j^2 tej1.5This represents a phasor of length 4 and phase
angle−1.5 radians rotating anticlockwise (i.e. in
the positive direction) with an angular velocity
of 2 rad/s, and another phasor of length 4 and
phase angle+1.5 radians and rotating clockwise
(i.e. in the negative direction) with an angular
velocity of 2 rad/s. Figure 74.11 shows the two
phasors.Imaginary axisω = 2 rad/sω = 2 rad/s1.5 rad
1.5 rad Real axis440Figure 74.11
Problem 8. Determine – the pair of phasors
that can be used to represent the third harmonicv=8 cos 3t−20 sin 3tUsing cost=1
2(
ejt+e−jt)and sint=1
2 j(
ejt−e−jt)
from page 690gives: v=8 cos 3t−20 sin 3t= 8[
1
2(
ej^3 t+e−j^3 t)]− 20[
1
2 j(
ej^3 t−e−j^3 t)]=4ej^3 t+4e−j^3 t−10
jej^3 t+10
je−j^3 t=4ej^3 t+4e−j^3 t−10(j)
j(j)ej^3 t+10(j)
j(j)e−j^3 t=4ej^3 t+4e−j^3 t+ 10 jej^3 t− 10 je−j^3 tsincej^2 =− 1=( 4 +j 10 )ej^3 t+(4−j10) e−j^3 t(4+j10)=√
42 + 102 ∠tan−^1(
10
4)= 10. 77 ∠ 1. 19and (4−j10)= 10. 77 ∠− 1. 19Hence,v=10.77∠1.19+10.77∠−1.19Thusvcomprises a phasor 10.77∠1.19 rotating anti-
clockwise with an angular velocity if 3 rad/s, and
a phasor 10.77∠−1.19 rotating clockwise with an
angular velocity of 3 rad/s.