Ess-For-H8152.tex 19/7/2006 18: 2 Page 715
ESSENTIAL FORMULAE 715Perpendicular axis theorem:IfOXandOYlie in the plane of areaAin Fig. FA7,thenAk^2 OZ=Ak^2 OX+AkOY^2 ork^2 OZ=k^2 OX+k^2 OYZArea AOX
YFigure FA7Numerical integrationTrapezoidal rule∫
ydx≈(
width of
interval)[
1
2(
first+last
ordinates)+(
sum of remaining
ordinates)]Mid-ordinate rule
∫
ydx≈(
width of
interval)(
sum of
mid-ordinates)Simpson’s rule∫
ydx≈1
3(
width of
interval)[(
first+last
ordinate)+ 4(
sum of even
ordinates)+ 2(
sum of remaining
odd ordinates)]Differential Equations
First order differential equationsSeparation of variablesIfdy
dx=f(x) theny=∫
f(x)dxIfdy
dx=f(y) then∫
dx=∫
dy
f(y)Ifdy
dx=f(x)·f(y) then∫
dy
f(y)=∫
f(x)dxHomogeneous equationsIfPdy
dx=Q, wherePandQare functions of both
xand y of the same degree throughout (i.e. a
homogeneous first order differential equation) then:(i) RearrangePdy
dx=Qinto the formdy
dx=Q
P
(ii) Make the substitution y=vx(where vis a
function ofx), from which, by the product rule,
dy
dx=v(1)+xdv
dx(iii) Substitute for bothyanddy
dxin the equation
dy
dx=Q
P
(iv) Simplify, by cancelling, and then separate thevariables and solve using thedy
dx=f(x)·f(y)
method(v) Substitutev=y
xto solve in terms of the original
variables.Linear first orderIfdy
dx+Py=Q, wherePandQare functions of
xonly (i.e. a linear first order differential equation),
then
(i) determine the integrating factor, e∫
Pdx
(ii) substitute the integrating factor (I.F.) into
the equationy(I.F.)=∫
(I.F.)Qdx(iii) determine the integral∫
(I.F.)Qdx