78 NUMBER AND ALGEBRA
Sincef(1) is positive andf(2) is negative, a root
lies betweenx=1 andx=2. A sketch off(x) =
x+ 3 −ex, i.e.x+ 3 =exis shown in Fig. 9.3.
f(x)
4
− 2
f(x) = ex
f(x) = x+ 3
3
2
0
1
−1 1 2 x
Figure 9.3
Bisecting the interval betweenx=1 andx=2gives
1 + 2
2
i.e. 1.5.
Hence
f(1.5)= 1. 5 + 3 −e^1.^5
=+0.01831...
Sincef(1.5) is positive andf(2) is negative, a root
lies betweenx= 1 .5 andx=2.
Bisecting this interval gives
1. 5 + 2
2
i.e. 1.75.
Hence
f(1.75)= 1. 75 + 3 −e^1.^75
=−1.00460...
Sincef(1.75) is negative andf(1.5) is positive, a root
lies betweenx= 1 .75 andx= 1 .5.
Bisecting this interval gives
1. 75 + 1. 5
2
i.e. 1.625.
Hence
f(1.625)= 1. 625 + 3 −e^1.^625
=−0.45341...
Sincef(1.625) is negative andf(1.5) is positive, a
root lies betweenx= 1 .625 andx= 1 .5.
Bisecting this interval gives
1. 625 + 1. 5
2
i.e. 1.5625.
Hence
f(1.5625)= 1. 5625 + 3 −e^1.^5625
=−0.20823...
Sincef(1.5625) is negative andf(1.5) is positive, a
root lies betweenx= 1 .5625 andx= 1 .5.
Bisecting this interval gives
1. 5625 + 1. 5
2
i.e. 1. 53125
Hence
f(1.53125)= 1. 53125 + 3 −e^1.^53125
=−0.09270...
Sincef(1.53125) is negative andf(1.5) is positive,
a root lies betweenx= 1 .53125 andx= 1 .5.
Bisecting this interval gives
1. 53125 + 1. 5
2
i.e. 1. 515625
Hence
f(1.515625)= 1. 515625 + 3 −e^1.^515625
=−0.03664...
Sincef(1.515625) is negative andf(1.5) is positive,
a root lies betweenx= 1 .515625 andx= 1 .5.
Bisecting this interval gives
1. 515625 + 1. 5
2
i.e. 1. 5078125
Hence
f(1.5078125)= 1. 5078125 + 3 −e^1.^5078125
=−0.009026...
Sincef(1.5078125) is negative andf(1.5) is positive,
a root lies betweenx= 1 .5078125 andx= 1 .5.
Bisecting this interval gives
1. 5078125 + 1. 5
2
i.e. 1. 50390625
Hence
f(1.50390625)= 1. 50390625 + 3 −e^1.^50390625
=+0.004676...
Sincef(1.50390625) is positive andf(1.5078125)
is negative, a root lies betweenx= 1 .50390625 and
x= 1 .5078125.