SOLUTIONS TO QUESTIONS 415
8.6
Variable costs are £750,000/300,000 batons=£2.50/baton. As the selling price is £5/baton,
the normal contribution/baton=£2.50 (£5−£2.50).
If 240,000 batons are sold at the normal price:
Contribution= 240 ,000 @ £2. 50 £600,000
−Fixed costs 450,000
Operating profit £150, 000
If 60,000 batons are sold at a 40% discount:
Sales=60% of £5=£3/baton, and contribution is 50p (£3 – variable
costs £2.50)
Contribution= 60 ,000 @ 50p/baton £30, 000
Total operating profit £180, 000
8.7
Profit=selling price per unit×number of units−(VC/unit×no. units+fixed costs)
therefore, £40, 000 =SP× 20 , 000 −((£8× 20 , 000 )+£100k)
Selling price=
£40, 000 +£160, 000 +£100, 000
20 ,000 units
=£300, 000 / 20 ,000 units=£15
8.8
Breakeven is:
( 10 , 000 × 35 )+ 450 , 000 + 0
10 , 000
800 , 000
10 , 000
=£80
Or:
Profit=price×no. of units−(fixed costs+variable costs×no. of units)
0 = 10 ,000P−( 450 , 000 + 35 × 10 , 000 )
0 = 10 ,000P−( 450 , 000 + 350 , 000 )
0 = 10 ,000P− 800 , 000
800 , 000 = 10 ,000P
P= 800 , 000 / 10 , 000 = 80
Proof
10 , 000 ×( 80 − 35 )= 10 , 000 × 45 = 450 , 000 − 450 , 000 = 0
8.9
Contribution per unit is 75− 30 = 45
Fixed costs are 1, 000 × 12 = 12 , 000
Breakeven=
12 , 000 + 10 , 000
45
=489 p.a.
8.10
200 , 000 ×12%
18 ,000 units
=
£24, 000
18 , 000
=£1.33 per unit