Synthesis site Linker Primer (P) Tag site(1) Gly Divide into two aliquots
(2) CACATGGly(1) Met
(2) ACGGTA(P)-CACATG Met (P)-ACGGTAMix and split into two aliquots(P)-ACGGTAACGGTA(P)-CACATGACGGTA(1) Met
(2) ACGGTA(1) Gly
(2) CACATGMet-MetMet-Gly(P)-ACGGTACACATG(P)-CACATGCACATGGly-MetGly-GlyMix and split into two aliquots and
repeat the previous processes until
the required library is obtained.Figure 6.11 The use of oligonucleotides to encode a peptide combinatorial synthesis for a library
based on two building blocks
CH 2 O−COClB^1 NH NHCOOCH 2 OCH 3B^1 NH NHP^1
Repeat this sequence of deprotecting and
coupling as appropriate in the mix and split
procedureCH 2 OCONH NHCOOCH 2 OCH 3C OCH 2 OCH 3OCl9-fluorenylmethoxy
chloroformate Acid labile Moz protecting group(1) Acidic Moz cleavage.
(2) Peptide tag (P^1 ) coupling.
P^1 is suitably protected.Base labile Fmoc protecting group
(1) Basic Fmoc cleavage.
(2) Building block (B^1 ) coupling.
B^1 is suitably protected, if
necessary.4-methoxybenzyloxy
chloroformateNH 2 −
−NH 2Figure 6.12 An outline of the Zuckermann approach using peptides for encodingthe synthesis all the tags are detached from the linker and are detected by GC.
The gas chromatogram is read like a bar code to account for the history of the
bead. Suppose, for example, that the formation of a tripeptide using six aryl
ENCODING METHODS 125