142 C H A P T E R 2: Continuous-Time Systems
Ift−T<0 andt≥0, the above integral becomesρ(t)=1
T
∫t0σdσ=t^2
2 T0 ≤t<Tbut ift−T≥0, we would then getρ(t)=1
T
∫tt−Tσdσ=t^2 −(t−T)^2
2 T=t−T
2
t≥TSo that the ramp response isρ(t)=
0 t< 0
t^2 /( 2 T) 0 ≤t<T
t−T/ 2 t≥TNotice that the second derivative ofρ(t)isd^2 ρ(t)
dt^2=
{
1 /T 0 ≤t<T
0 otherwisewhich is the impulse response of the averager as found before. nnExample 2.11
Find the convolution integralyT(t)of a pulsex(t)=u(t)−u(t−T 0 )with a sampling signalδT(t)=∑∞
k=−∞δ(t−kT)ConsiderT=T 0 andT= 2 T 0. Find and plot the correspondingyT(t).SolutionFor any value ofTthe convolution integral is given byyT(t)=∫∞
−∞δT(τ)x(t−τ)dτ=∫∞
−∞∑∞
k=−∞δ(τ−kT)x(t−τ)dτ=
∑∞
k=−∞∫∞
−∞δ(τ−kT)x(t−τ)dτ=∑∞
k=−∞x(t−kT)∫∞
−∞δ(τ−kT)dτ=
∑∞
k=−∞x(t−kT)