252 C H A P T E R 4: Frequency Analysis: The Fourier Series
Let us then show how the coefficientsckanddkcan be obtained directly from the signal. Using the
relationXk=X−∗kand the fact that for a complex numberz=a+jb, thenz+z∗=(a+jb)+(a−
jb)= 2 a= 2 Re(z), we have thatx(t)=X 0 +∑∞
k= 1[Xkejk^0 t+X−ke−jk^0 t]=X 0 +
∑∞
k= 1[Xkejk^0 t+X∗ke−jk^0 t]=X 0 +
∑∞
k= 12 Re[Xkejk^0 t]SinceXkis complex (verify this!),2 Re[Xkejk^0 t]= 2 Re[Xk] cos(k 0 t)− 2 Im[Xk] sin(k 0 t)Now, if we letck=Re[Xk]=1
T 0
t (^0) ∫+T 0
t 0
x(t)cos(k 0 t)dt k=1, 2,...
dk=−Im[Xk]=
1
T 0
t (^0) ∫+T 0
t 0
x(t)sin(k 0 t)dt k=1, 2,...
we then have
x(t)=X 0 +
∑∞
k= 1(
2 Re[Xk] cos(k 0 t)− 2 Im[Xk] sin(k 0 t))
=X 0 + 2
∑∞
k= 1(ckcos(k 0 t)+dksin(k 0 t))and since the averageX 0 =c 0 we obtain the second form of the trigonometric Fourier series shown
in Equation (4.19). Notice thatd 0 =0 and so it is not necessary to define it.The coefficientsXk=|Xk|ejθkare connected with the coefficientsckanddkby|Xk|=√
c^2 k+d^2 kθk=−tan−^1[
dk
ck]
This can be shown by adding the phasors corresponding tockcos(k 0 t)anddksin(k 0 t)and finding
the magnitude and phase of the resulting phasor.