5.8 Additional Properties 349
and a second derivative gives
d^2 x(t)
dt^2
=δ(t)− 2 δ(t− 1 )+δ(t− 2 )
Using the time-shift and the derivative properties, we get from the expression for the second
derivative and lettingX()be the Fourier transform ofx(t):
(j)^2 X()= 1 − 2 e−j+e−j^2
=e−j[ej− 2 +e−j]
so that
X()=
2 e−j
^2
[1−cos()]
n
nExample 5.23
Consider the integral
y(t)=
∫t
−∞
x(τ)dτ−∞<t<∞
wherex(t)=u(t+ 1 )−u(t− 1 ). Find the Fourier transformY()directly and from the integration
property.
Solution
The integral is
y(t)=
0 t<− 1
t+ 1 − 1 ≤t< 1
2 t≥ 1
or
y(t)=[r(t+ 1 )−r(t− 1 )− 2 u(t− 1 )]
︸ ︷︷ ︸
y 1 (t)
+ 2 u(t− 1 )
The Fourier transform ofy 1 (t)is
Y 1 ()=
[
es−e−s
s^2
−
2 e−s
s
]
s=j
=
− 2 jsin()
^2
+j
2 e−j