5.8 Additional Properties 349and a second derivative givesd^2 x(t)
dt^2=δ(t)− 2 δ(t− 1 )+δ(t− 2 )Using the time-shift and the derivative properties, we get from the expression for the second
derivative and lettingX()be the Fourier transform ofx(t):(j)^2 X()= 1 − 2 e−j+e−j^2
=e−j[ej− 2 +e−j]so thatX()=
2 e−j
^2[1−cos()]
nnExample 5.23
Consider the integraly(t)=∫t−∞x(τ)dτ−∞<t<∞wherex(t)=u(t+ 1 )−u(t− 1 ). Find the Fourier transformY()directly and from the integration
property.Solution
The integral isy(t)=
0 t<− 1
t+ 1 − 1 ≤t< 1
2 t≥ 1ory(t)=[r(t+ 1 )−r(t− 1 )− 2 u(t− 1 )]
︸ ︷︷ ︸
y 1 (t)+ 2 u(t− 1 )The Fourier transform ofy 1 (t)isY 1 ()=
[
es−e−s
s^2−
2 e−s
s]
s=j=
− 2 jsin()
^2+j2 e−j