474 C H A P T E R 8: Discrete-Time Signals and Systems
SolutionUsing the unit-sample signal generic representation, we haver[n]=∑∞
k=−∞(ku[k])δ[n−k]=∑∞
k= 0kδ[n−k]= 0 δ[n]+ 1 δ[n−1]+ 2 δ[n−2]+···Lettingm=n−k, we write the above equation asr[n]=∑nm=−∞(n−m)δ[m]=∑nm=−∞(n−m)(u[m]−u[m−1])=
∑nm= 0(n−m)−∑nm= 1(n−m)=n+∑nm= 1(n−m)−∑nm= 1(n−m)=n n≥ 0Forn<0,r[n]=0. nnExample 8.16
Consider a discrete pulsex[n]={
1 0≤n≤N− 1
0 otherwiseObtain representations ofx[n] using unit-sample and unit-step signals.SolutionThe signalx[n] can be represented asx[n]=N∑− 1
k= 0δ[n−k]and usingδ[n]=u[n]−u[n−1], we obtain a representation of the discrete pulse in terms of unit-
step signals,x[n]=N∑− 1
k= 0(u[n−k]−u[n−k−1])=(u[n]−u[n−1])+(u[n−1]−u[n−2])+···−u[n−N]
=u[n]−u[n−N]because of the cancellation of consecutive terms. n