9.5 One-Sided Z-Transform Inverse 551− 1 −0.5 0(a) (b)0.5 1
− 2−1.5− 1−0.500.511.5222Real partImaginary part0 2 4 6 8 10
−0.100.10.20.30.40.50.6nx[n]FIGURE 9.10
(a) Poles and zeros ofX(z)and (b) inverse Z-transformx[n].
Ifx[n]has a one-sided Z-transformX(z), thenx[n−N]has the following one-sided Z-transform:Z[x[n−N]]=z−NX(z)+x[−1]z−N+^1 +x[−2]z−N+^2 +···+x[−N] (9.35)Indeed, we have that
Z(x[n−N])=∑∞
n= 0x[n−N]z−n=∑∞
m=−Nx[m]z−(m+N)=z−N∑∞
m= 0x[m]z−m+∑−^1
m=−Nx[m]z−(m+N)=z−NX(z)+x[−1]z−N+^1 +x[−2]z−N+^2 +···+x[−N]where we first letm=n−Nand then separated the sum into two, one corresponding to the
Z-transform ofx[n] multiplied byz−N(the delay on the signal) and a second sum that corresponds
to initial values{x[i],−N≤i≤− 1 }.