602 C H A P T E R 10: Fourier Analysis of Discrete-Time Signals and Systems
SolutionThe Fourier series coefficients are found as (ω 0 = 2 π/20 rad)X[k]=1
20
Z(x 1 [n])∣
∣
∣
z=ej
220 πk=1
20
∑^9
n= 0z−n∣
∣
∣
z=ej
220 πk=1
20
1 −z−^10
1 −z−^1∣
∣
∣
z=ej
220 πkA close expression forX[k] is obtained as follows:X[k]=z−^5 (z^5 −z−^5 )
20 z−0.5(z0.5−z−0.5)∣
∣
∣z=ej^220 πk=
e−jπk/^2 sin(πk/ 2 )
20 e−jπk/^20 sin(πk/ 20 )=
e−j^9 πk/^20
20sin(πk/ 2 )
sin(πk/ 20 ) n10.3.3 DTFT of Periodic Signals
A discrete-time periodic signalx[n]of periodNwith a Fourier series representation of
x[n]=∑kX[k]ej^2 πnk/N (10.30)has a DTFTX(ejω)=∑k2 πX[k]δ(ω− 2 πk/N) −π≤ω < π (10.31)If we letF(.)indicate the DTFT, the DTFT of a periodic signalx[n] isX(ejω)=F(
x[n])
=F
(
∑
kX[k]ej^2 πnk/N)
=
∑
kF
(
X[k]ej^2 πnk/N)
=
∑
k2 πX[k]δ(ω− 2 πk/N) −π≤ω < πwhereδ(ω)is the analog delta function sinceωvaries continuously.nExample 10.15
The periodic signalδM[n]=∑∞
m=−∞δ[n−mM]has a periodM. Find its DTFT.