602 C H A P T E R 10: Fourier Analysis of Discrete-Time Signals and Systems
Solution
The Fourier series coefficients are found as (ω 0 = 2 π/20 rad)
X[k]=
1
20
Z(x 1 [n])
∣
∣
∣
z=ej
220 πk=
1
20
∑^9
n= 0
z−n
∣
∣
∣
z=ej
220 πk=
1
20
1 −z−^10
1 −z−^1
∣
∣
∣
z=ej
220 πk
A close expression forX[k] is obtained as follows:
X[k]=
z−^5 (z^5 −z−^5 )
20 z−0.5(z0.5−z−0.5)
∣
∣
∣z=ej^220 πk
=
e−jπk/^2 sin(πk/ 2 )
20 e−jπk/^20 sin(πk/ 20 )
=
e−j^9 πk/^20
20
sin(πk/ 2 )
sin(πk/ 20 ) n
10.3.3 DTFT of Periodic Signals
A discrete-time periodic signalx[n]of periodNwith a Fourier series representation of
x[n]=
∑
k
X[k]ej^2 πnk/N (10.30)
has a DTFT
X(ejω)=
∑
k
2 πX[k]δ(ω− 2 πk/N) −π≤ω < π (10.31)
If we letF(.)indicate the DTFT, the DTFT of a periodic signalx[n] is
X(ejω)=F
(
x[n]
)
=F
(
∑
k
X[k]ej^2 πnk/N
)
=
∑
k
F
(
X[k]ej^2 πnk/N
)
=
∑
k
2 πX[k]δ(ω− 2 πk/N) −π≤ω < π
whereδ(ω)is the analog delta function sinceωvaries continuously.
nExample 10.15
The periodic signal
δM[n]=
∑∞
m=−∞
δ[n−mM]
has a periodM. Find its DTFT.