10.3 Fourier Series of Discrete-Time Periodic Signals 613
(a)
01
1
2345
n
x[n]
......
(b)
0 1
1
2
2
3
n
v[n]
1 ......
1
0, 0, 1, 1 0
1, 0, 0, 1
0, 1, 1, 0
1, 1, 0, 0
0
1
1
0
0
x[n]
(c)
n
1
2
0123
z[n]
0, 0, 1, 1 ......
1, 0, 0, 1
0, 1, 1, 0
1, 1, 0, 0
1
1
0
0
FIGURE 10.13
Periodic convolution sum ofx[n]with itself to getv[n]: (a) linear and circular representations ofx[n]; (b) periodic
convolution sum givingv[n]. (c) Circular representation of periodic convolution sum ofx[n]andy[n]=x[n−2],
the result isz[n]=v[n−2].
As before, the Fourier series coefficients ofz[n] are given by
Z[k]= 4
X 1 (z)Y 1 (z)
4 × 4
|z=ej 2 πk/ 4 =
z−^2 + 2 z−^3 +z−^4
4
|z=ej 2 πk/ 4
=
1
4
(e−j^2 π^2 k/^4 + 2 e−j^2 π^3 k/^4 +e−j^2 π^4 k/^4 )=
1
4
( 1 +e−j^2 π^2 k/^4 + 2 e−j^2 π^3 k/^4 )