718 CHAPTER 12: Applications of Discrete-Time Signals and Systems
FIGURE 12.2
Lattice forn 0 =0, 1andn 1 =0,..., 3(the values in
parentheses are the indices of the samples). Notice the
ordering in the two columns.n 1n 0(^01)
2
3
1
(0)
(2)
(4)
(6)
(1)
(3)
(5)
(7)
Figure 12.2 displays a lattice forn 0 andn 1 and the indices of the samples are in parentheses. By
replacingk= 4 k 1 +k 0 , we get the first step of the decimation-in-time.
If we lety[n]=x[2n] andz[n]=x[2n+1],n=0,..., 3, we can then repeat the above procedure
by factoring 4=pq= 2 ×2 and expressingY[k] andZ[k] as we did forX[k]. Thus, we have
Y[k 0 ,k 1 ]=
∑^1
n 0 = 0W
n 0 (k 1 p+k 0 )
4∑^1
n 1 = 0y[n 0 ,n 1 ]W
n 1 (k 1 p+k 0 )
2=
∑^1
n 1 = 0y[0,n 1 ]W
n 1 (k 1 p+k 0 )
2 +W(k 1 p+k 0 )
4∑^1
n 1 = 0y[1,n 1 ]W
n 1 (k 1 p+k 0 )
2andZ[k 0 ,k 1 ]=∑^1
n 1 = 0z[0,n 1 ]W
n 1 (k 1 p+k 0 )
2 +W(k 1 p+k 0 )
4∑^1
n 1 = 0z[1,n 1 ]W
n 1 (k 1 p+k 0 )
2where nowk= 2 k 1 +k 0 fork 0 =0, 1,k 1 =0, 1
n= 2 n 1 +n 0 forn 0 =0, 1,n 1 =0, 1If we replacek= 2 k 1 +k 0 , we obtainY[k]=I[k]+W 4 kG[k]
Z[k]=H[k]+W 4 kF[k]whereI[k]=∑^1
n 1 = 0y[0,n 1 ]Wn 21 k=∑^1
n 1 = 0y[2n 1 ]W 2 n^1 k=∑^1
n 1 = 0x[4n 1 ]W 2 n^1 k