7.23.Determine the temperature of phase transition (melt-
ing, boiling) and compare it with pure components.
7.24.Benzene is poisonous and a suspected carcinogen.
7.25.Using a 5050 mix of ethylene glycol and water lowers
its freezing point to below those of the individual components.
7.26.K1.23 106 mmHg 1.62 103 atm 1.64
103 bar
7.28.2.4 103 Pa
7.29.Molarity 0.00232 M; K2.43 109 Pa
7.30. (a)M0.00077 M (b)K7.3 109 Pa (c)Decrease
7.33.M5.08 M
7.34.xphenol0.79, suggesting a solubility of over 1900 g of
phenol per 100 g of H 2 O. The reason for this odd result is that
H 2 O and phenol do not form an ideal solution.
7.35. (a)2.78 M (b)29.7 g/100 mL, or about 1.80 M
7.39.MP (Fe, est) 1515 K
7.45.xNa0.739
7.49.BP 101.1°C, MP 4.0°C, 52.5 bar
7.50. (MP) 9.8°C
7.53.Kf8.89°C/molal
Chapter 8
8.1.2.50 10 ^8 C
8.2. (a)F3.54 1022 N (b)Charge equals 2.97
1017 C, which is approximately 3 1012 mol e. This mass
of this many electrons is approximately 1.7 106 kg, 18 or-
ders of magnitude less massive than Earth.
8.3. (a)Charge equals 4.98 10 ^9 C and 9.96 10 ^9 C.
(b)E312 and 156 J/(Cm) (or V/m).
8.4.1 C 2.998 109 statcoulombs
8.5.F8.24 10 ^8 N
8.6.w1.602 10 ^19 J
8.8. (a)4 MnO 2 3O 2 2H 2 O →4MnO 4 4H, E°
1.278 V, G°1480 kJ (b)2Cu→Cu Cu^2 , E°
0.368 V, G°35.5 kJ
8.12.Only part b could provide enough energy to perform
the task.
8.13.E° values are shifted up or down by 0.2682 V depend-
ing on whether the calomel is used as the reduction reaction
or the oxidation reaction in the cell.
8.14. (a)E°1.401 V, G270.3 kJ (b)E°0.0067 V,
G2.6 kJ
8.17.[Zn^2 ]/[Cu^2 ] ~3210
8.18.E1.514 V
8.19. (a)E°0.00 V (b)Q[Fe^3 ]/[Fe^3 ] ^00 .0.0^081 (c)E
0.0375 V
8.20.K3.25 10 ^2
8.23. CpnF 2 ET°T
2
T
E
2
°
8.31.[Cl] 1.38 10 ^6 M
8.33. (a)0.0055 m (b)0.075 m (c)0.0750 m (d)0.150 m
8.40.0.949, using equation 8.49
8.48.vi4.735 10 ^6 m/s, which is over 10,000 times its
radius per second
Chapter 9
9.1.L^12 mz^2 mgz; mz/tmg
9.2.H^12 mz^2 mgz
9.4. (a)Newton’s (b)Lagrange’s or Hamilton’s
9.6. (a)459,000 cm^1 (b)2690 cm^1 (c)3020 cm^1
9.7.The two compounds should share at least one constituent
element.
9.8.This “line” corresponds to n 1 .
9.9.For the Lyman series, the series limit equals 109,700 cm^1.
For the Brackett series, the series limit equals 6856 cm^1.
9.10. (a)105,350 cm^1 (b)25,720 cm^1 (c)5334 cm^1
9.12.e/m1.71 1011 C/kg (using Milliken’s data from
the chapter). Modern measurements give this ratio as 1.76
1011 C/kg.
9.13. (a)It takes over 7300 eto equal the mass of an He
nucleus.
9.14. (a)5.67 104 W/m^2 (c)1420 W
9.15.T65 K, 115 K, and 205 K, respectively
9.16.340 W
9.17. (a)6.42 107 W/m^2 (b)3.91 1020 W (c)1.23
1028 J per year
9.18. (a)5.55 106 J/m^4 (b)1.06 107 J/m^4 (c)1.11
103 J/m^4 (d)69.4 J/m^4
9.19. (a)4996 Å
9.20. (a)5.12 10 ^5 J/m^4 (b)90.5 J/m^4 (c)497.1 J/m^4
(d)47.4 J/m^4
9.22.For T1000 K, dE0.101 W/m^2
9.24.For Li, min428 nm
9.25. (a)1.82 105 m/s
9.29.r8.47, 13.2, and 19.1 Å, respectively
9.30.E1.367 10 ^19 , 8.716 10 ^20 , and 6.053
10 ^20 J, respectively
9.31.L4.22 10 ^34 , 5.27 10 ^34 , and 6.33 10 ^34 Js,
respectively
Chapter 9 809