11.51.P0.68% for a 1selectron.
11.53.Radial, angular, and total nodes respectively: (a)1, 0,
and 1 for 2 s(b)2, 0, and 2 for 3 s(c)1, 1, and 2 for 3 p
(d)0, 3, and 3 for 4 f.
11.57. 2 px 4 ^1 2 ^2 Za
3
(^3)
1/2
ZareZr/asin cos
11.60. r 1.5afor 1 s, where a0.529 Å
Chapter 12
12.2.(3d 2 )
1
1
62
Z
a
3
(^3)
1/2
Z
a
2
2
r^2 eZr/3asin^2 e^2 ior
1
1
62
Z
a
3
(^3)
1/2
Z
a
2
2
r^2 eZr/3asin^2 e^2 i
12.3.e/eannihilation 1.637 10 ^13 J or 9.860
1010 J/mol
12.4.Yes, and spin functions are orthogonal.
12.5.(b) ms0; ms2, 1, 0, 1, or 2; ms^32 , ^12 ,
^12 , or ^32 .
12.6. (a)negative (b)positive (c)negative (d)negative
(e)positive
12.7.Hˆ
2
2
(^2 e1^2 e2^2 e3)
4
3
e
0
2
r 1
4
3
e
0
2
r 2
4
3
e
0
2
r 3
4
e
2
0 r 12
4
e
2
0 r 13
4
e
2
0 r 23
not separable
12.8. (a)E5.883 10 ^17 J (b)E4.412 10 ^17 J
12.11.Li^1 2 [(1s 1 )(1s 2 ) (1s 2 )(1s 1 )]
12.12.H has only a single electron, so there is no antisym-
metry with respect to exchange to consider.
1 s 1 1 s 1 2 s 1 2 s 1
12.13. (a)^1 s^21 s^2 ^2 s^22 s^2
Be
1
24
1 s
3 1 s 3 ^2 s 3 2 s 3
1 s 4 1 s 4 2 s 4 2 s 4
1 s 1 1 s 1 2 s 1 2 s 1 2 px,1
1 s 2 1 s 2 2 s 2 2 s 2 2 px,2
B
1
1
20
1 s 3 1 s 3 2 s 3 2 s 3 2 px,3
1 s 4 1 s 4 2 s 4 2 s 4 2 px,4
1 s 5 1 s 5 2 s 5 2 s 5 2 px,5
(The last column could be 2px, or 2py or , or 2pz or .
Thus, there are six possible determinants for a B atom.) (b)C
has six different possible determinants, as does F.
12.14.C has 720 terms in its antisymmetric wavefunction;
Na has 39,916,800, and Si has 87,178,291,200 terms.
12.16. (a)excited (b)ground (c)excited (d)excited
12.17. (a)Li (1s^22 p^1 ) will have six possible arrangements:
1 s^22 px^1 , 1s^22 px^1 , 1s^22 py^1 , 1s^22 py^1 , 1s^22 pz^1 , and 1s^22 pz^1 .
12.18.The correction to the energy won’t be an exact cor-
rection even if the integral can be solved analytically because
the wavefunctions in the integral are for the ideal system, not
the real system.
12.19. Eperturb 3 c/(4 2 ), where cis the anharmonicity
constant.
12.20.A correction like cx^3 makes the integrand an odd func-
tion, making the numerical value of the integral exactly zero.
12.21.a 3 15 kma^2 /(16^2 h^2 )
12.24. (a)no (unless both A& Bequal zero, which is a triv-
ial wavefunction anyway) (b)no (c)no (d)yes (e)no (f)no
(g)no. Most of these trial functions do not satisfy the bound-
ary conditions for a particle-in-a-box.
12.34.The Born-Oppenheimer approximation is more applic-
able to Cs 2 , whose nuclei move more slowly than those in H 2.
12.35. E2(H(^111 S^12 S 2
12
H
)
^12 )
12.40.For example, B: (g 1 s)^2 (u*1s)^2 (g 2 s)^2 (u*2s)^2 (u 2 px,
u 2 py)
12.42.No, F 22 should not exist according to MO theory.
Chapter 13
13.2. (a)E, C 2 (principal axis), 4C 2 (perpendicular to princi-
pal axis), h, 2v, i, S 2 (b)E, C 2 , 2v(c)E, several ’s
13.3. (b)C2v
13.5. (a)Complete group (b)Complete group (c)Incom-
plete group: Emissing (d)Incomplete group: C^23 (the inverse
of C 3 ) missing
13.6.C 2 , C 3
13.7. (a)Sn(b)i
13.8. (a)4 classes, order 4 (b)8 classes, order 8 (c) 12
classes, order 24 (d)3 classes, order 4 (e)2 classes, or-
der 2 (f)5 classes, order 24
13.10. (a)S^34 , which is classed with the other S 4 symmetry
operations in the Tdcharacter table (b)C 2 , which is its own
inverse
13.11. (a)v (b)h(c)S 6 (d)S 4 (e)C^34
13.12.Symmetry elements do not necessarily follow the com-
mutative law (this is more apparent for larger groups).
13.13.Porphine has D2hsymmetry as a molecule; substitut-
ing metal ions for the two H’s inside the porphine ring, and
the symmetry becomes D4h.
0
0
1
0
1
0
1
0
0
0
0
1
sin
cos
0
cos
sin
0
0
0
1
2 ^3
^12
0
^12
23
0
0
0
1
1
1
0
1
1
0
Chapter 13 811