or computer packages (Table 1.9). If the calculated value ofFis less than the table
value, the null hypothesis is proved and the two standard deviations are considered to
be similar. If the two variances are of the same order, then equations 1.16 and 1.17 are
used to calculatetcalcfor the two data sets. If not, equations 1.18 and 1.19 are used.
tcalc¼x^1 x^2
spooled
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1 n 2
n 1 þn 2
r
ð 1 : 16 Þ
spooled¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s^21 ðn 1 1 Þþs^22 ðn 2 1 Þ
n 1 þn 2 2
s
ð 1 : 17 Þ
tcalc¼
x 1 x 2
p
ðs^21 =n 1 þs^22 =n 2 Þ
ð 1 : 18 Þ
degrees of freedom¼ s
ðÞ 12 =n 1 þs 22 =n 22
ðÞs^21 =n 12 =ðÞþn 1 þ 1 ðÞs^22 =n 22 =ðÞn 2 þ 1
()
2 ð 1 : 19 Þ
wherex 1 andx 2 are the calculated means of the two methods,s^21 ands^22 are the
calculated standard deviations of the two methods andn 1 andn 2 are the number of
measurements in the two methods.
At first sight these four equations may appear daunting, but closer inspection reveals
that they are simply based on variance (s^2 ), mean (x) and number of analytical meas-
urements (n) and that the mathematical manipulation of the data is relatively easy.
Table 1.9Critical values ofFat the 95% confidence level
Degrees of
freedom forS 2
Degrees of freedom forS 1
23461015301
2 19.0 19.2 19.2 19.3 19.4 19.4 19.5 19.5
3 9.55 9.28 9.12 8.94 8.79 8.70 8.62 8.53
4 6.94 6.59 6.39 6.16 5.96 5.86 5.75 5.63
5 5.79 5.41 5.19 4.95 4.74 4.62 4.50 4.36
6 5.14 4.76 4.53 4.28 4.06 3.94 3.81 3.67
7 4.74 4.35 4.12 3.87 3.64 3.51 3.38 3.23
8 4.46 4.07 3.84 3.58 3.35 3.22 3.08 2.93
9 4.26 3.86 3.63 3.37 3.14 3.01 2.86 2.71
10 4.10 3.71 3.48 3.22 2.98 2.84 2.70 2.54
15 3.68 3.29 3.06 2.79 2.54 2.40 2.25 2.07
20 3.49 2.10 2.87 2.60 2.35 2.20 2.04 1.84
30 3.32 2.92 2.69 2.42 2.16 2.01 1.84 1.62
1 3.00 2.60 2.37 2.10 1.83 1.67 1.46 1.00
30 Basic principles