174
Show that if (1) holds, then
(2)
(3)
(4)
Functions, limits, derivatives
Hn(x)e ax2l2 = (-1)n E ax2f2
dx
[-axH,(x) + H'(x)le axe/2+ = (-1)n dxn+i aax2l2
do+1
o+
axHn(x) - H(x) = (-1)n+iea==/ 2^12
d
'l dxn+ia -2
and
(5) axHn(x) - H.'a(x).
Use (5) and the fact that Ho(x) = 1 to obtain the formulas
Ho(x) = 1
Hi(x) = ax
H2(x) = a2x2 - a
Hs(x) = a°x° - 3a2x
H4(x) = a4x4 - 6a°x2 + 342
H5(x) = a6x6 - 10a4x° + 15asx
He(x) = a6x6 - 1Sa°x4 + 45a4x2 - 15a°
H7(x) = a7x7 - 21a6x° + 105a°x° - 105a4x.
23 The Laguerre polynomials are defined by the formulas Lo(x) = 1 and
L,,(x) = ex ...).
den
(xne x) (n = 1 ,2,3,
Show that
Lo(x) = 1
Ll(x) = -x + 1
L2(x) =x2-4x+2
Lo(x) = -x° + 9x2 - 18x + 6
L4(x) = x4 - 16x° + 72x2 - 96x + 24.
24 Supposing that y = eli6l or h(t) = eein °, use the chain rule and the formula
for derivatives of products to obtain the first three derivatives with respect to
t of these things. dns.:
(1) dd = h'(t) = eeia t cos t-
(2) d2y = h"(t) eein t sin t + e' ' COS2 t
(3) dt3 = h"'(t) _ -e'in' cos i - 3eBin' cos t sin t + e8in= cos° t.
25 Assuming existence of all of the derivatives we want to use, show that if
h(t) = f(g(t)), then
(1) Y(t) = f'(g(t))g'(t)
(2) h"(t) = f(g(t))g"(t) +f"(g(t))Ig'(t)l2
and write a formula for h"'(t). Then show that these formulas reduce to those
of Problem 24 when f(x) = el and g(t) = sin t.