so that we can easily compute the coefficients.
an=1
2 L
∫L
−Lf(x)e−inπx
L dxIn summary, the Fourier series equations we will use are
f(x) =∑∞
n=−∞aneinπxLand
an=1
2 L
∫L
−Lf(x)e−inπx
L dx.We will expand the interval to infinity.
5.6.2 Fourier Transform*
To allow wavefunctions to extend to infinity, we will expand the interval used
L→∞.As we do this we will use the wave number
k=nπ
L.
AsL→∞.,kcan take on any value, implying we will have a continuous distribution ofk. Our sum
overnbecomes an integral overk.
dk=π
Ldn.If we defineA(k) =
√
2
πLan, we can make the transform come out with the constants we want.f(x) =∑∞
n=−∞ane
inπxL
Standard Fourier Seriesan= 21 L∫L
−Lf(x)e−inπx
L dx Standard Fourier SeriesAn=√
2
πL1
2 L∫L
−Lf(x)e−inπx
L dx redefine coefficientAn=√^12 π∫L
−Lf(x)e−inπx
L dxf(x) =√π
21
L∑∞
n=−∞Ane
inπxL
f stays the samef(x) =√π
√
2 L∞∫
−∞A(k)eikxLπdk but is rewritten in new A and dkf(x) =√^12 π∞∫
−∞A(k)eikxdk resultA(k) =√^12 π∫∞
−∞f(x)e−ikxdx result