We now have two pairs of equations for then+ 1 coefficients in terms of thencoefficients.
An+1 =2 maV 0
̄h^2 kBncos(ka)−Bnsin(ka) +Ancos(ka)Bn+1 =2 maV 0
̄h^2 kBnsin(ka) +Bncos(ka) +Ansin(ka)An+1 = eiφAn
Bn+1 = eiφBnUsing the second pair of equations to eliminate then+ 1 coefficients, we have
(eiφ−cos(ka))An=(
2 maV 0
̄h^2 kcos(ka)−sin(ka))
Bn
(
eiφ−cos(ka)−2 maV 0
̄h^2 ksin(ka))
Bn= sin(ka)An.Now we can eliminate all the coefficients.
(eiφ−cos(ka))(eiφ−cos(ka)−2 maV 0
̄h^2 ksin(ka))=
(
2 maV 0
̄h^2 kcos(ka)−sin(ka))
sin(ka)e^2 iφ−eiφ(
2 maV 0
̄h^2 ksin(ka) + cos(ka) + cos(ka))
+
2 maV 0
̄h^2 ksin(ka) cos(ka) + cos^2 (ka)=
2 maV 0
̄h^2 ksin(ka) cos(ka)−sin^2 (ka)e^2 iφ−eiφ(
2 maV 0
̄h^2 ksin(ka) + 2 cos(ka))
+ 1 = 0
Multiply bye−iφ.
eiφ+e−iφ−(
2 maV 0
̄h^2 ksin(ka) + 2 cos(ka))
= 0
cos(φ) = cos(ka) +maV 0
̄h^2 ksin(ka)This relation puts constraints onk, like the constraints that give us quantized energies for bound
states. Since cos(φ) can only take on values between -1 and 1, there are allowed bands ofkand gaps
between those bands.
9.8 Examples
This whole section is examples.