state of the particle and on the potential.
Answerd〈A〉
dt=
1
i ̄h〈[A,H]〉
d〈x〉
dt=
1
i ̄h〈[
x,p^2
2 m]〉
=
1
i ̄h〈
p
m(
− ̄h
i)〉
=
〈p〉
m
d〈p〉
dt=
1
i ̄h〈[p,V(x)]〉=1
i ̄h̄h
i〈[
d
dx,V(x)]〉= −
〈
dV
dx〉
- Compute the commutators [A†,An] and [A,eiHt] for the 1D harmonic oscillator.
Answer
[A†,An] = n[A†,A]An−^1 =−nAn−^1[A,eiHt] = [A,∑∞
n=0(it)nHn
n!] =
∑∞
n=0(it)n[A,Hn]
n!=
∑∞
n=0n(it)n[A,H]Hn−^1
n!=it∑∞
n=1(it)n−^1 ̄hωAHn−^1
(n−1)!it∑∞
n=1(it)n−^1 ̄hωAHn−^1
(n−1)!= it ̄hωA∑∞
n=1(it)n−^1 Hn−^1
(n−1)!= it ̄hωA∑∞
n=0(it)nHn
(n)!=it ̄hωAeiHt4.*Assume that the states|ui>are the eigenstates of the Hamiltonian with eigenvaluesEi,
(H|ui>=Ei|ui>).
a) Prove that< ui|[H,A]|ui>= 0 for an arbitrary linear operatorA.
b) For a particle of massmmoving in 1-dimension, the Hamiltonian is given byH=p2
2 m+
V(x). Compute the commutator [H,X] whereXis the position operator.
c) Compute< ui|P|ui>the mean momentum in the state|ui>.5.*Att= 0, a particle of massmis in the Harmonic Oscillator stateψ(t= 0) =√^12 (u 0 +u 1 ).
Use the Heisenberg picture to find the expected value ofxas a function of time.