∇~ 2 =−~∇r+ m^2
m 1 +m 2∇~R
Putting this into theHamiltonianwe get
H=
− ̄h^2
2 m 1[
~∇^2 r+(
m 1
m 1 +m 2) 2
∇~^2 R+^2 m^1
m 1 +m 2∇~r·∇~R]
+
− ̄h^2
2 m 2[
∇~^2 r+(
m 2
m 1 +m 2) 2
~∇^2 R−^2 m^2
m 1 +m 2~∇r·~∇R]
+V(~r)H=− ̄h^2[(
1
2 m 1+
1
2 m 2)
∇~^2 r+ m^1 +m^2
2(m 1 +m 2 )^2∇~^2 R
]
+V(~r).Defining thereduced massμ
1
μ=
1
m 1+
1
m 2and the total mass
M=m 1 +m 2we get.
H=−
̄h^2
2 μ
∇~^2 r− ̄h2
2 M
∇~^2 R+V(~r)The Hamiltonian actuallyseparates into two problems: the motion of thecenter of massas a
free particle
H=− ̄h^2
2 M∇~^2 R
and theinteraction between the two particles.
H=−
̄h^2
2 μ∇~^2 r+V(~r)This is exactly the same separation that we would make in classical physics.