∫
dΩYℓm∗Yℓ′m′=δℓℓ′δmm′We will use theactual functionin some problems.
Y 00 =
1
√
4 πY 11 = −√
3
8 πeiφsinθY 10 =
√
3
4 πcosθY 22 =
√
15
32 πe^2 iφsin^2 θY 21 = −
√
15
8 πeiφsinθcosθY 20 =
√
5
16 π(3 cos^2 θ−1)The spherical harmonics with negativemcan be easily compute from those with positivem.
Yℓ(−m)= (−1)mYℓm∗Any function ofθandφcan beexpanded in the spherical harmonics.
f(θ,φ) =∑∞
ℓ=0∑ℓ
m=−ℓCℓmYℓm(θ,φ)The spherical harmonics form acomplete set.
∑∞ℓ=0∑ℓ
m=−ℓ|Yℓm〉 〈Yℓm|=∑∞
ℓ=0∑ℓ
m=−ℓ|ℓm〉 〈ℓm|= 1When using bra-ket notation,|ℓm〉is sufficient to identify the state.
The spherical harmonics arerelated to the Legendre polynomialswhich are functions ofθ.
Yℓ 0 (θ,φ) =(
2 ℓ+ 1
4 π)^12
Pℓ(cosθ)Yℓm = (−1)m[
2 ℓ+ 1
4 π(ℓ−m)!
(ℓ+m)!]^12
Pℓm(cosθ)eimφ