We expect to need to keep the radial derivatives so lets identify those by dotting~rinto~p. This will
also make the units matchL^2.
(~r·~p)^2 = − ̄h^2(
x∂
∂x+y∂
∂y+z∂
∂z) 2
= − ̄h^2(
x^2∂^2
∂x^2
+y^2∂^2
∂y^2
+z^2∂^2
∂z^2
+ 2xy∂^2
∂x∂y
+ 2yz∂^2
∂y∂z
+ 2xz∂^2
∂x∂z+x∂
∂x+y∂
∂y+z∂
∂z)
By adding these two expressions, things simplify a lot.
L^2 + (~r·~p)^2 =r^2 p^2 +i ̄h~r·~pWe can now solve forp^2 and we have something we can use in the Schr ̈odinger equation.
p^2 =1
r^2(
L^2 + (~r·~p)^2 −i ̄h~r·~p)
=
1
r^2L^2 −
̄h^2
r^2(
r∂
∂r) 2
− ̄h^21
r∂
∂rThe Schr ̈odinger equation now can be written with only radial derivatives andL^2.
− ̄h^2
2 μ[
1
r^2(
r∂
∂r) 2
+
1
r∂
∂r−
L^2
̄h^2 r^2]
uE(~r) +V(r)uE(~r) =EuE(~r)14.4.4 Spherical Coordinates and the Angular Momentum Operators.
The transformation from spherical coordinates to Cartesian coordinate is.
x = rsinθcosφ
y = rsinθsinφ
z = rcosθThe transformation from Cartesian coordinates to spherical coordinates is.
r =√
x^2 +y^2 +z^2
cosθ =z
√
x^2 +y^2 +z^2
tanφ =y
x