V(r) Scattering from a Spherical Well
a r-V 0EMatching the logarithmic derivative, we get
k′[djℓ(ρ)
dρ
jℓ(ρ)]
ρ=k′a=k[
Bdjdρℓ(ρ)+Cdndρℓ(ρ)
Bjℓ(ρ) +Cnℓ(ρ)]
ρ=ka.
Recalling that forr→∞,
jℓ→sin(ρ−ℓπ 2 )
ρnℓ→−cos(ρ−ℓπ 2 )
ρand that our formula with the phase shift is
R(r) ∝sin(
ρ−ℓπ 2 +δℓ(k))
ρ=1
ρ[
cosδℓsin(ρ−ℓπ
2) + sinδℓcos(ρ−ℓπ
2)
]
,
we canidentify the phase shifteasily.
tanδℓ=−C
B
We need to use the boundary condition to get this phase shift.
Forℓ= 0, we get
k′
cos(k′a)
sin(k′a)=k
Bcos(ka) +Csin(ka)
Bsin(ka)−Ccos(ka)
k′
kcot(k′a) (Bsin(ka)−Ccos(ka)) =Bcos(ka) +Csin(ka)
(
k′
kcot(k′a) sin(ka)−cos(ka))
B=
(
sin(ka) +k′
kcot(k′a) cos(ka))
C
We can now get the phase shift.
tanδ 0 =−C
B
=
kcos(ka) sin(k′a)−k′cos(k′a) sin(ka)
ksin(ka) sin(k′a) +k′cos(k′a) cos(ka)