V(r) Scattering from a Spherical Well
a r
-V 0
E
Matching the logarithmic derivative, we get
k′
[djℓ(ρ)
dρ
jℓ(ρ)
]
ρ=k′a
=k
[
Bdjdρℓ(ρ)+Cdndρℓ(ρ)
Bjℓ(ρ) +Cnℓ(ρ)
]
ρ=ka
.
Recalling that forr→∞,
jℓ→
sin(ρ−ℓπ 2 )
ρ
nℓ→
−cos(ρ−ℓπ 2 )
ρ
and that our formula with the phase shift is
R(r) ∝
sin
(
ρ−ℓπ 2 +δℓ(k)
)
ρ
=
1
ρ
[
cosδℓsin(ρ−
ℓπ
2
) + sinδℓcos(ρ−
ℓπ
2
)
]
,
we canidentify the phase shifteasily.
tanδℓ=−
C
B
We need to use the boundary condition to get this phase shift.
Forℓ= 0, we get
k′
cos(k′a)
sin(k′a)
=k
Bcos(ka) +Csin(ka)
Bsin(ka)−Ccos(ka)
k′
k
cot(k′a) (Bsin(ka)−Ccos(ka)) =Bcos(ka) +Csin(ka)
(
k′
k
cot(k′a) sin(ka)−cos(ka)
)
B=
(
sin(ka) +
k′
k
cot(k′a) cos(ka)
)
C
We can now get the phase shift.
tanδ 0 =−
C
B
=
kcos(ka) sin(k′a)−k′cos(k′a) sin(ka)
ksin(ka) sin(k′a) +k′cos(k′a) cos(ka)