130_notes.dvi

(Frankie) #1

V(r) Scattering from a Spherical Well


a r

-V 0

E

Matching the logarithmic derivative, we get


k′

[djℓ(ρ)

jℓ(ρ)

]

ρ=k′a

=k

[

Bdjdρℓ(ρ)+Cdndρℓ(ρ)
Bjℓ(ρ) +Cnℓ(ρ)

]

ρ=ka

.

Recalling that forr→∞,


jℓ→

sin(ρ−ℓπ 2 )
ρ

nℓ→

−cos(ρ−ℓπ 2 )
ρ

and that our formula with the phase shift is


R(r) ∝

sin

(

ρ−ℓπ 2 +δℓ(k)

)

ρ

=

1

ρ

[

cosδℓsin(ρ−

ℓπ
2

) + sinδℓcos(ρ−

ℓπ
2

)

]

,

we canidentify the phase shifteasily.


tanδℓ=−

C

B

We need to use the boundary condition to get this phase shift.


Forℓ= 0, we get


k′
cos(k′a)
sin(k′a)

=k
Bcos(ka) +Csin(ka)
Bsin(ka)−Ccos(ka)
k′
k

cot(k′a) (Bsin(ka)−Ccos(ka)) =Bcos(ka) +Csin(ka)
(
k′
k

cot(k′a) sin(ka)−cos(ka)

)

B=

(

sin(ka) +

k′
k

cot(k′a) cos(ka)

)

C

We can now get the phase shift.


tanδ 0 =−

C

B

=

kcos(ka) sin(k′a)−k′cos(k′a) sin(ka)
ksin(ka) sin(k′a) +k′cos(k′a) cos(ka)
Free download pdf