Explicitly put in this behavior and use a power series expansion to solvethe full equation.
R=yℓ
∑∞
k=0
akyke−y
(^2) / 2
∑∞
k=0
akyℓ+ke−y
(^2) / 2
We’ll need to compute the derivatives.
dR
dy
=
∑∞
k=0
ak[(ℓ+k)yℓ+k−^1 −yℓ+k+1]e−y
(^2) / 2
d^2 R
dy^2
=
∑∞
k=0
ak[(ℓ+k)(ℓ+k−1)yℓ+k−^2 −(ℓ+k)yℓ+k
−(ℓ+k+ 1)yℓ+k+yℓ+k+2]e−y
(^2) / 2
d^2 R
dy^2
=
∑∞
k=0
ak[(ℓ+k)(ℓ+k−1)yℓ+k−^2
−(2ℓ+ 2k+ 1)yℓ+k+yℓ+k+2]e−y
(^2) / 2
We can now plug these into the radial equation.
d^2 R
dy^2
+
2
y
dR
dy
−y^2 R−
ℓ(ℓ+ 1)
y^2
R+
2 E
̄hω
R= 0
Each term will contain the exponentiale−y
(^2) / 2
, so we can factor that out. We can also run a single
sum over all the terms.
∑∞
k=0
ak
[
(ℓ+k)(ℓ+k−1)yℓ+k−^2 −(2ℓ+ 2k+ 1)yℓ+k+yℓ+k+2
+2(ℓ+k)yℓ+k−^2 − 2 yℓ+k−yℓ+k+2−ℓ(ℓ+ 1)yℓ+k−^2 +
2 E
̄hω
yℓ+k
]
= 0
The terms for largeywhich go likeyℓ+k+2and some of the terms for smallywhich go likeyℓ+k−^2
should cancel if we did our job right.
∑∞
k=0
ak
[
[(ℓ+k)(ℓ+k−1)−ℓ(ℓ+ 1) + 2(ℓ+k)]yℓ+k−^2
+
[
2 E
̄hω
− 2 −(2ℓ+ 2k+ 1)
]
yℓ+k
]
= 0
∑∞
k=0
ak
[
[ℓ(ℓ−1) +k(2ℓ+k−1)−ℓ(ℓ+ 1) + 2ℓ+ 2k]yℓ+k−^2
+
[
2 E
̄hω
− 2 −(2ℓ+ 2k+ 1)
]
yℓ+k
]
= 0
∑∞
k=0
ak
[
[k(2ℓ+k+ 1)]yℓ+k−^2 +
[
2 E
̄hω
−(2ℓ+ 2k+ 3)
]
yℓ+k