Explicitly put in this behavior and use a power series expansion to solvethe full equation.
R=yℓ∑∞
k=0akyke−y(^2) / 2
∑∞
k=0akyℓ+ke−y(^2) / 2
We’ll need to compute the derivatives.
dR
dy
=
∑∞
k=0ak[(ℓ+k)yℓ+k−^1 −yℓ+k+1]e−y(^2) / 2
d^2 R
dy^2
=
∑∞
k=0ak[(ℓ+k)(ℓ+k−1)yℓ+k−^2 −(ℓ+k)yℓ+k−(ℓ+k+ 1)yℓ+k+yℓ+k+2]e−y(^2) / 2
d^2 R
dy^2
=
∑∞
k=0ak[(ℓ+k)(ℓ+k−1)yℓ+k−^2−(2ℓ+ 2k+ 1)yℓ+k+yℓ+k+2]e−y(^2) / 2
We can now plug these into the radial equation.
d^2 R
dy^2
+
2
ydR
dy−y^2 R−ℓ(ℓ+ 1)
y^2R+
2 E
̄hωR= 0
Each term will contain the exponentiale−y
(^2) / 2
, so we can factor that out. We can also run a single
sum over all the terms.
∑∞
k=0
ak
[
(ℓ+k)(ℓ+k−1)yℓ+k−^2 −(2ℓ+ 2k+ 1)yℓ+k+yℓ+k+2+2(ℓ+k)yℓ+k−^2 − 2 yℓ+k−yℓ+k+2−ℓ(ℓ+ 1)yℓ+k−^2 +2 E
̄hω
yℓ+k]
= 0
The terms for largeywhich go likeyℓ+k+2and some of the terms for smallywhich go likeyℓ+k−^2
should cancel if we did our job right.
∑∞k=0ak[
[(ℓ+k)(ℓ+k−1)−ℓ(ℓ+ 1) + 2(ℓ+k)]yℓ+k−^2+
[
2 E
̄hω− 2 −(2ℓ+ 2k+ 1)]
yℓ+k]
= 0
∑∞
k=0ak[
[ℓ(ℓ−1) +k(2ℓ+k−1)−ℓ(ℓ+ 1) + 2ℓ+ 2k]yℓ+k−^2+
[
2 E
̄hω− 2 −(2ℓ+ 2k+ 1)]
yℓ+k]
= 0
∑∞
k=0ak[
[k(2ℓ+k+ 1)]yℓ+k−^2 +[
2 E
̄hω−(2ℓ+ 2k+ 3)]
yℓ+k