Recall the standard method of finding eigenvectors and eigenvalues:
Aψ=αψ
(A−α)ψ= 0
For spin^12 system we have, in matrix notation,
(
a 1 a 2
a 3 a 4
)(
χ 1
χ 2
)
=α
(
1 0
0 1
)(
χ 1
χ 2
)
⇒
(
a 1 −α a 2
a 3 a 4 −α
)(
χ 1
χ 2
)
= 0
For a matrix times a nonzero vector to give zero, the determinant of the matrix must be zero. This
gives the “characteristic equation” which for spin^12 systems will be a quadratic equation in the
eigenvalueα: ∣
∣
∣
∣
a 1 −α a 2
a 3 a 4 −α
∣
∣
∣
∣= (a^1 −α)(a^4 −α)−a^2 a^3 = 0
α^2 −(a 1 +a 4 )α+ (a 1 a 4 −a 2 a 3 ) = 0
whose solution is
α±=
(a 1 +a 4 )
4
±
√
(a 1 +a 4 )
2
2
−(a 1 a 4 −a 2 a 3 )
To find the eigenvectors, we simply replace (one at a time) each of the eigenvalues above into the
equation (
a 1 −α a 2
a 3 a 4 −α
)(
χ 1
χ 2
)
= 0
and solve forχ 1 andχ 2.
Now specifically, for the operatorA=Sx= ̄h 2
(
0 1
1 0
)
, the eigenvalue equation (Sx−α)χ= 0
becomes, in matrix notation,
̄h
2
(
0 1
1 0
)(
χ 1
χ 2
)
−
(
α 0
0 α
)(
χ 1
χ 2
)
= 0
⇒
(
−α ̄h/ 2
̄h/ 2 −α
)(
χ 1
χ 2
)
= 0
The characteristic equation isdet|Sx−α|= 0, or
α^2 −
̄h^2
4
= 0 ⇒ α=±
̄h
2
These are the two eigenvalues (we knew this, of course). Now, substituting α+ back into the
eigenvalue equation, we obtain
(
−α+ ̄h/ 2
̄h/ 2 −α+
)(
χ 1
χ 2
)
=
(
− ̄h/2 ̄h/ 2
̄h/ 2 − ̄h/ 2
)(
χ 1
χ 2
)
=
̄h
2
(
−1 1
1 − 1
)(
χ 1
χ 2