From the symmetry of the problem, we can guess (and verify) that[H,pz] = [H,Lz] = 0. These
variables will be constants of the motion and we therefore choose
ψ(~r) = umk(ρ)eimφeikz.
Lzψ =
̄h
i
∂
∂φ
ψ=m ̄hψ
pzψ =
̄h
i
∂
∂z
ψ= ̄hkψ
∇^2 ψ = −k^2 ψ−
m^2
ρ^2
ψ+
∂^2 u
∂ρ^2
eimφeikz+
1
ρ
∂u
∂ρ
eimφeikz
d^2 u
dρ^2
+
1
ρ
du
dρ
−
m^2
ρ^2
u−
e^2 B^2
4 ̄h^2 c^2
ρ^2 u+
(
2 meE
̄h^2
−
eBm
̄hc
−k^2
)
u= 0
Letx=
√
eB
2 ̄hcρ(dummy variable, not the coordinate) andλ=
4 mec
eB ̄h
(
E− ̄h
(^2) k 2
2 me
)
− 2 m. Then
d^2 u
dx^2
+
1
x
du
dx
−
m^2
x^2
u−x^2 u+λ= 0
In the limitx→∞,
d^2 u
dx^2
−x^2 u= 0 ⇒ u∼e−x
(^2) / 2
while in the other limitx→0,
d^2 u
dx^2
+
1
x
du
dx
−
m^2
x^2
u= 0
Try a solution of the formxs. Then
s(s−1)xs−^2 +sxs−^2 −m^2 xs−^2 = 0 ⇒ s^2 =m^2
A well behaved function⇒s≥ 0 ⇒s=|m|
u(x) =x|m|e−x
(^2) / 2
G(x)
Plugging this in, we have
d^2 G
dx^2
+
(
2 |m|+ 1
x
− 2 x
)
dG
dx
+ (λ− 2 − 2 |m|)G= 0
We canturn this into the hydrogen equationfor
y=x^2
and hence
dy= 2x dx
d
dy
=
1
2 x
d
dx
.
Transforming the equation we get
d^2 G
dy^2
+
(
|m|+ 1
y
− 1
)
dG
dy
+
λ− 2 − 2 |m|
4 y
G= 0.
Compare this to the equation we had for hydrogen
d^2 H
dρ^2
+
(
2 ℓ+ 2
ρ
− 1
)
dH
dρ
+
λ− 1 −ℓ
ρ