130_notes.dvi

(Frankie) #1

21.8.3 Applying theS^2 Operator toχ 1 mandχ


We wish to verify that the states we have deduced are really eigenstates of theS^2 operator. We will
really compute this in the most brute force.


S^2 =

(

S~ 1 +S~ 2

) 2

=S 12 +S^22 + 2S~ 1 ·S~ 2

S^2 χ(1)+χ(2)+ = s 1 (s 1 + 1) ̄h^2 χ(1)+χ(2)+ +s 2 (s 2 + 1) ̄h^2 χ+(1)χ(2)+ + 2S~ 1 χ(1)+ ·S~ 2 χ(2)+

=

3

2

̄h^2 χ(1)+χ(2)+ + 2

(

S(1)x Sx(2)+S(1)y Sy(2)+S(1)z S(2)z

)

χ(1)+χ(2)+

Sxχ+ =

̄h
2

(

0 1

1 0

)(

1

0

)

=

̄h
2

(

0

1

)

=

̄h
2

χ−

Syχ+ =

̄h
2

(

0 −i
i 0

)(

1

0

)

=

̄h
2

(

0

i

)

=i

̄h
2

χ−

Sxχ− =

̄h
2

(

0 1

1 0

)(

0

1

)

=

̄h
2

(

1

0

)

=

̄h
2

χ+

Syχ− =

̄h
2

(

0 −i
i 0

)(

0

1

)

=

̄h
2

(

−i
0

)

=−i

̄h
2

χ+

S^2 χ
(1)

(2)
+ =

3

2

̄h^2 χ
(1)

(2)
+ +

̄h^2
2

[(

0

1

)

1

(

0

1

)

2

+

(

0

i

)

1

(

0

i

)

2

+

(

1

0

)

1

(

1

0

)

2

]

=

3

2

̄h^2 χ(1)+χ(2)+ +
̄h^2
2

[(

0

1

)

1

(

0

1

)

2


(

0

1

)

1

(

0

1

)

2

+

(

1

0

)

1

(

1

0

)

2

]

=

3

2

̄h^2 χ(1)+χ(2)+ +

̄h^2
2

χ(1)+χ(2)+ = 2 ̄h^2 χ(1)+χ(2)+

Note thats(s+ 1) = 2, so that the 2 ̄his what we expected to get. This confirms that we have an
s=1 state.


Now lets do theχ 00 state.


S^2 χ 00 =

(

S 12 +S 22 + 2S~ 1 ·S~ 2

)

χ 00

=

(

S 12 +S 22 + 2

(

Sx(1)S(2)x +Sy(1)S(2)y +Sz(1)S(2)z

))

χ 00

=

(

S 12 +S 22 + 2Sz(1)Sz(2)+ 2

(

Sx(1)S(2)x +Sy(1)S(2)y

))

χ 00

=

(

3

4

+

3

4

− 2

1

4

)

̄h^2 χ 00 + 2

(

S(1)x Sx(2)+S(1)y Sy(2)

)

χ 00

= ̄h^2 χ 00 + 2

(

S(1)x Sx(2)+S(1)y Sy(2)

) 1


2

(

χ
(1)

(2)
− −χ

(1)
−χ

(2)
+

)

= ̄h^2 χ 00 +

̄h^2
2

1


2

(

χ
(1)
−χ

(2)
+ −χ

(1)

(2)
− +i(−i)χ

(1)
−χ

(2)
+ −(−i)iχ

(1)

(2)

)
Free download pdf