23.4.6 The Anomalous Zeeman Effect
We compute the energy change due to a weak magnetic field using first order Perturbation Theory.
〈
ψnℓjmj∣
∣
∣
∣
eB
2 mc(Lz+ 2Sz)∣
∣
∣
∣ψnℓjmj〉
(Lz+ 2Sz) =Jz+SzTheJzpart is easy since we are in eigenstates of that operator.
〈
ψnℓjmj
∣
∣
∣
∣
eB
2 mcJz∣
∣
∣
∣ψnℓjmj〉
=
eB
2 mc̄hmjTheSzis harder since we are not in eigenstates of that one. We need
〈
ψnℓjmj∣
∣eB
2 mcSz∣
∣ψnℓjmj〉, butwe don’t know howSzacts on these. So, we must write
∣
∣ψnjmjℓs〉in terms of|ψnℓmℓsms〉.En(1) =〈
ψnjℓmj∣
∣
∣
∣
eB
2 mc(Jz+Sz)∣
∣
∣
∣ψnjℓmj〉
=
eB
2 mc(
mj ̄h+〈
ψnjℓmj|Sz|ψnjℓmj〉)
We already know how to write in terms of these states of definitemℓandms.
ψn(ℓ+ (^12) )ℓ(m+ (^12) ) = αYℓmχ++βYℓ(m+1)χ−
ψn(ℓ− (^12) )ℓ(m+ (^12) ) = βYℓmχ+−αYℓ(m+1)χ−
α =
√
ℓ+m+ 1
2 ℓ+ 1β =√
ℓ−m
2 ℓ+ 1Let’s do thej=ℓ+^12 state first.
〈
ψnjℓmj|Sz|ψnjℓmj〉
=
〈
αYℓ(mj− (^12) )χ++βYℓ(mj+ (^12) )χ−|Sz|αYℓ(mj− (^12) )χ++βYℓ(mj+ (^12) )χ−
〉
=
1
2
̄h(
α^2 −β^2)
m=mj−^12Forj=ℓ−^12 ,
〈
ψnjℓmj|Sz|ψnjℓmj
〉
=
1
2
̄h(
β^2 −α^2)
m=mj−^12We can combine the two formulas forj=ℓ±^12.
〈
ψnjℓmj|Sz|ψnjℓmj〉
= ±
̄h
2(
α^2 −β^2)
=±
̄h
2ℓ+m+ 1−ℓ+m
2 ℓ+ 1= ±̄h
22(mj−^12 ) + 1
2 ℓ+ 1=±
mj ̄h
2 ℓ+ 1