Then we compute the energy shift in first order perturbation theory for s states.
∆E=
〈
e
mec
S~·B~
〉
=−
Ze^2 gN
2 meMNc^2
(
S~·~I
〈
∇^2
1
r
〉
−
〈
SiIj
∂
∂xi
∂
∂xj
1
r
〉)
The second term can be simplified because of the spherical symmetry of s states. (Basically the
derivative with respect to x is odd in x so when the integral is done, only the terms wherei=jare
nonzero). ∫
d^3 r|φn 00 (~r)|^2
∂
∂xi
∂
∂xj
1
r
=
δij
3
∫
d^3 r|φn 00 (~r)|^2 ∇^2
1
r
So we have
∆E=−
2
3
Ze^2 gN
2 meMNc^2
S~·I~
〈
∇^2
1
r
〉
.
Now working out the∇^2 term in spherical coordinates,
(
∂^2
∂r^2
+
2
r
∂
∂r
)
1
r
=
2
r^3
+
2
r
(
− 1
r^2
)
= 0
we find that it is zero everywhere but we must be careful atr= 0.
To find the effect atr= 0 we will integrate.
∫ε
r=0
∇~^21
r
d^3 r=
∫ε
r=0
~∇·(∇~^1
r
)d^3 r=
∫
(∇~
1
r
)·dS~ =
∫
∂
∂r
1
r
dS
=
∫ε
r=0
− 1
r^2
dS= (4πε^2 )(
− 1
ε^2
) =− 4 π
So the integral is nonzero for any region including the origin, which implies
(
∇^2
1
r
)
=− 4 πδ^3 (~r).
We can now evaluate the expectation value.
∆E=−
2
3
Ze^2 gN
2 meMNc^2
S~·~I(− 4 π|φn 00 (0)|^2 )
4 π|φn 00 (0)|^2 =|Rn 0 (0)|^2 =
4
n^3
(
Zαmec
̄h
) 3
∆E=
2
3
Ze^2 gN
2 meMNc^2
S~·I~^4
n^3
(
Zαmec
̄h
) 3
Simply writing thee^2 in terms ofαand regrouping, we get
∆E=
4
3
(Zα)^4
(
me
MN
)
(mec^2 )gN
1
n^3
S~·~I
̄h^2