Then we compute the energy shift in first order perturbation theory for s states.
∆E=
〈
e
mecS~·B~
〉
=−
Ze^2 gN
2 meMNc^2(
S~·~I
〈
∇^2
1
r〉
−
〈
SiIj∂
∂xi∂
∂xj1
r〉)
The second term can be simplified because of the spherical symmetry of s states. (Basically the
derivative with respect to x is odd in x so when the integral is done, only the terms wherei=jare
nonzero). ∫
d^3 r|φn 00 (~r)|^2∂
∂xi∂
∂xj1
r=
δij
3∫
d^3 r|φn 00 (~r)|^2 ∇^21
rSo we have
∆E=−2
3
Ze^2 gN
2 meMNc^2S~·I~
〈
∇^2
1
r〉
.
Now working out the∇^2 term in spherical coordinates,
(
∂^2
∂r^2
+
2
r∂
∂r)
1
r=
2
r^3+
2
r(
− 1
r^2)
= 0
we find that it is zero everywhere but we must be careful atr= 0.
To find the effect atr= 0 we will integrate.
∫εr=0∇~^21
rd^3 r=∫εr=0~∇·(∇~^1
r)d^3 r=∫
(∇~
1
r)·dS~ =∫
∂
∂r1
rdS=
∫εr=0− 1
r^2dS= (4πε^2 )(− 1
ε^2) =− 4 πSo the integral is nonzero for any region including the origin, which implies
(
∇^2
1
r)
=− 4 πδ^3 (~r).We can now evaluate the expectation value.
∆E=−
2
3
Ze^2 gN
2 meMNc^2S~·~I(− 4 π|φn 00 (0)|^2 )4 π|φn 00 (0)|^2 =|Rn 0 (0)|^2 =4
n^3(
Zαmec
̄h) 3
∆E=
2
3
Ze^2 gN
2 meMNc^2S~·I~^4
n^3(
Zαmec
̄h) 3
Simply writing thee^2 in terms ofαand regrouping, we get
∆E=
4
3
(Zα)^4(
me
MN)
(mec^2 )gN1
n^3S~·~I
̄h^2