130_notes.dvi

(Frankie) #1

25.6 Examples


25.6.1 1D Harmonic Oscillator


Use
ψ=


(

a^2 −x^2

) 2

|x|≤a

andψ= 0 otherwise as a trial wave function. Recall the actual wave function ise−mωx


(^2) /2 ̄h 2


. The
energy estimate is


E′=

〈(

a^2 −x^2

) 2

|− ̄h

2
2 m

d^2
dx^2 +

1
2 mω

(^2) x (^2) |(a (^2) −x 2 )^2




(a^2 −x^2 )^2 |(a^2 −x^2 )^2

〉.

We need to do some integrals of polynomials to compute


E′=

3

2

̄h^2
ma^2

+

1

22

mω^2 a^2.

Now we optimize the parameter.


dE′
da^2

= 0 =

− 3

2

̄h^2
ma^4

+

1

22

mω^2 ⇒a^2 =


33

̄h^2
mω^2

=


33

̄h

E′=

3

2

̄hω

33

+

1

22

mω^2


33

̄h

=

(

3

2


33

+


33

22

)

̄hω=

1

2

̄hω

(√

33 +


33

11

)

=

1

2

̄hω


4 · 3


11

=

1

2

̄hω


12

11

This is close to the right answer. As always, it is treated as an upper limit on the ground state
energy.


25.6.2 1-D H.O. with exponential wavefunction


As a check of the procedure, take trial functione−ax


(^2) / 2


. This should give us the actual ground state
energy.


E′=

∞∫

−∞

ψ∗

[

− ̄h

2
2 m

∂^2 ψ
∂x^2 +

1
2 mω

(^2) x (^2) ψ


]

dx

∫∞
−∞

ψ∗ψdx

=

{

− ̄h^2
2 m

∞∫

−∞

e−ax

2 [

a^2 x^2 −a

]

dx+^12 mω^2

∞∫

−∞

x^2 e−ax

2
dx

}

∞∫

−∞

e−ax^2 dx
Free download pdf