25.6 Examples
25.6.1 1D Harmonic Oscillator
Use
ψ=
(
a^2 −x^2
) 2
|x|≤a
andψ= 0 otherwise as a trial wave function. Recall the actual wave function ise−mωx
(^2) /2 ̄h 2
. The
energy estimate is
E′=
〈(
a^2 −x^2
) 2
|− ̄h
2
2 m
d^2
dx^2 +
1
2 mω
(^2) x (^2) |(a (^2) −x 2 )^2
〉
〈
(a^2 −x^2 )^2 |(a^2 −x^2 )^2
〉.
We need to do some integrals of polynomials to compute
E′=
3
2
̄h^2
ma^2
+
1
22
mω^2 a^2.
Now we optimize the parameter.
dE′
da^2
= 0 =
− 3
2
̄h^2
ma^4
+
1
22
mω^2 ⇒a^2 =
√
33
̄h^2
mω^2
=
√
33
̄h
mω
E′=
3
2
̄hω
√
33
+
1
22
mω^2
√
33
̄h
mω
=
(
3
2
√
33
+
√
33
22
)
̄hω=
1
2
̄hω
(√
33 +
√
33
11
)
=
1
2
̄hω
√
4 · 3
√
11
=
1
2
̄hω
√
12
11
This is close to the right answer. As always, it is treated as an upper limit on the ground state
energy.
25.6.2 1-D H.O. with exponential wavefunction
As a check of the procedure, take trial functione−ax
(^2) / 2
. This should give us the actual ground state
energy.
E′=
∞∫
−∞
ψ∗
[
− ̄h
2
2 m
∂^2 ψ
∂x^2 +
1
2 mω
(^2) x (^2) ψ
]
dx
∫∞
−∞
ψ∗ψdx
=
{
− ̄h^2
2 m
∞∫
−∞
e−ax
2 [
a^2 x^2 −a
]
dx+^12 mω^2
∞∫
−∞
x^2 e−ax
2
dx
}
∞∫
−∞
e−ax^2 dx