130_notes.dvi

(Frankie) #1
1

|~r 1 −~r 2 |

=

1


r 12 +r^22 − 2 r 1 r 2 cosθ

Do thedΩ 1 integral and prepare the other.


∆Egs=

4 π
π^2

e^2

(

Z

a 0

) 6 ∫∞

0

r 12 dr 1 e−^2 Zr^1 /a^0

∫∞

0

r^22 dr 2 e−^2 Zr^2 /a^0


dφ 2 dcosθ 2

1


r^21 +r^22 − 2 r 1 r 2 cosθ 2

The angular integrals are not hard to do.


∆Egs =

4 π
π^2

e^2

(

Z

a 0

) 6 ∫∞

0

r 12 dr 1 e−^2 Zr^1 /a^0

∫∞

0

r^22 dr 2 e−^2 Zr^2 /a^02 π

[

− 2

2 r 1 r 2


r^21 +r 22 − 2 r 1 r 2 cosθ 2

] 1

− 1

∆Egs =

4 π
π^2

e^2

(

Z

a 0

) 6 ∫∞

0

r 12 dr 1 e−^2 Zr^1 /a^0

∫∞

0

r^22 dr 2 e−^2 Zr^2 /a^0

2 π
r 1 r 2
[


r^21 +r^22 − 2 r 1 r 2 +


r^21 +r^22 + 2r 1 r 2

]

∆Egs =

4 π
π^2

e^2

(

Z

a 0

) 6 ∫∞

0

r 12 dr 1 e−^2 Zr^1 /a^0

∫∞

0

r^22 dr 2 e−^2 Zr^2 /a^0

2 π
r 1 r 2

[−|r 1 −r 2 |+ (r 1 +r 2 )]

∆Egs = 8e^2

(

Z

a 0

) 6 ∫∞

0

r 1 dr 1 e−^2 Zr^1 /a^0

∫∞

0

r 2 dr 2 e−^2 Zr^2 /a^0 (r 1 +r 2 −|r 1 −r 2 |)

We can do the integral forr 2 < r 1 and simplify the expression. Because of the symmetry between
r 1 andr 2 the rest of the integral just doubles the result.


∆Egs = 16e^2

(

Z

a 0

) 6 ∫∞

0

r 1 dr 1 e−^2 Zr^1 /a^0

∫r^1

0

r 2 dr 2 e−^2 Zr^2 /a^0 (2r 2 )

∆Egs = e^2

Z

a 0

∫∞

0

x 1 dx 1 e−x^1

∫x^1

0

x^22 dx 2 e−x^2

=

Ze^2
a 0

∫∞

0

x 1 dx 1 e−x^1




−x^21 e−x^1 +

∫x^1

0

2 x 2 dx 2 e−x^2




=

Ze^2
a 0

∫∞

0

x 1 dx 1 e−x^1




−x^21 e−x^1 − 2 x 1 e−x^1 + 2

∫x^1

0

e−x^2 dx 2




=

Ze^2
a 0

∫∞

0

x 1 dx 1 e−x^1

{

−x^21 e−x^1 − 2 x 1 e−x^1 − 2

(

e−x^1 − 1

)}

= −

Ze^2
a 0

∫∞

0

[(

x^31 + 2x^21 + 2x 1

)

e−^2 x^1 − 2 x 1 e−x^1

]

dx 1
Free download pdf