1
|~r 1 −~r 2 |
=
1
√
r 12 +r^22 − 2 r 1 r 2 cosθ
Do thedΩ 1 integral and prepare the other.
∆Egs=
4 π
π^2
e^2
(
Z
a 0
) 6 ∫∞
0
r 12 dr 1 e−^2 Zr^1 /a^0
∫∞
0
r^22 dr 2 e−^2 Zr^2 /a^0
∫
dφ 2 dcosθ 2
1
√
r^21 +r^22 − 2 r 1 r 2 cosθ 2
The angular integrals are not hard to do.
∆Egs =
4 π
π^2
e^2
(
Z
a 0
) 6 ∫∞
0
r 12 dr 1 e−^2 Zr^1 /a^0
∫∞
0
r^22 dr 2 e−^2 Zr^2 /a^02 π
[
− 2
2 r 1 r 2
√
r^21 +r 22 − 2 r 1 r 2 cosθ 2
] 1
− 1
∆Egs =
4 π
π^2
e^2
(
Z
a 0
) 6 ∫∞
0
r 12 dr 1 e−^2 Zr^1 /a^0
∫∞
0
r^22 dr 2 e−^2 Zr^2 /a^0
2 π
r 1 r 2
[
−
√
r^21 +r^22 − 2 r 1 r 2 +
√
r^21 +r^22 + 2r 1 r 2
]
∆Egs =
4 π
π^2
e^2
(
Z
a 0
) 6 ∫∞
0
r 12 dr 1 e−^2 Zr^1 /a^0
∫∞
0
r^22 dr 2 e−^2 Zr^2 /a^0
2 π
r 1 r 2
[−|r 1 −r 2 |+ (r 1 +r 2 )]
∆Egs = 8e^2
(
Z
a 0
) 6 ∫∞
0
r 1 dr 1 e−^2 Zr^1 /a^0
∫∞
0
r 2 dr 2 e−^2 Zr^2 /a^0 (r 1 +r 2 −|r 1 −r 2 |)
We can do the integral forr 2 < r 1 and simplify the expression. Because of the symmetry between
r 1 andr 2 the rest of the integral just doubles the result.
∆Egs = 16e^2
(
Z
a 0
) 6 ∫∞
0
r 1 dr 1 e−^2 Zr^1 /a^0
∫r^1
0
r 2 dr 2 e−^2 Zr^2 /a^0 (2r 2 )
∆Egs = e^2
Z
a 0
∫∞
0
x 1 dx 1 e−x^1
∫x^1
0
x^22 dx 2 e−x^2
=
Ze^2
a 0
∫∞
0
x 1 dx 1 e−x^1
−x^21 e−x^1 +
∫x^1
0
2 x 2 dx 2 e−x^2
=
Ze^2
a 0
∫∞
0
x 1 dx 1 e−x^1
−x^21 e−x^1 − 2 x 1 e−x^1 + 2
∫x^1
0
e−x^2 dx 2
=
Ze^2
a 0
∫∞
0
x 1 dx 1 e−x^1
{
−x^21 e−x^1 − 2 x 1 e−x^1 − 2
(
e−x^1 − 1
)}
= −
Ze^2
a 0
∫∞
0
[(
x^31 + 2x^21 + 2x 1
)
e−^2 x^1 − 2 x 1 e−x^1
]
dx 1