130_notes.dvi

(Frankie) #1

29.6 Explicit 2p to 1s Decay Rate


Starting from the summary equation for electric dipole transitions,above,


Γtot=


αω^3 in
2 πc^2


λ


dΩγ

∣ ∣ ∣ ∣ ∣ ∣


4 π
3

∫∞

0

r^3 drR∗nnℓnRniℓi


dΩYℓ∗nmn

(

ǫzY 10 +

−ǫx+iǫy

2

Y 11 +

ǫx+iǫy

2

Y 1 − 1

)

Yℓimi

∣ ∣ ∣ ∣ ∣ ∣

2

we specialize to the 2p to 1s decay,


Γtot=


αω^3 in
2 πc^2


λ


dΩγ




∣∣



4 π
3

∫∞

0

r^3 drR∗ 10 R 21


dΩY 00 ∗

(

ǫzY 10 +

−ǫx+iǫy

2

Y 11 +

ǫx+iǫy

2

Y 1 − 1

)

Y 1 mi




∣∣


2

perform the radial integration,


∫∞

0

r^3 drR∗ 10 R 21 =

∫∞

0

r^3 dr

[

2

(

1

a 0

) (^32)
e−r/a^0


][

1


24

(

1

a 0

) (^52)
re−r/^2 a^0


]

=

1


6

(

1

a 0

) 4 ∫∞

0

r^4 dre−^3 r/^2 a^0

=

1


6

(

1

a 0

) 4 (

2 a 0
3

) 5 ∫∞

0

x^4 dxe−x

=

1


6

(

2

3

) 5

a 0 (4!)

= 4


6

(

2

3

) 5

a 0

and perform the angular integration.

dΩ Y 00 ∗


(

ǫzY 10 +

−ǫx+iǫy

2

Y 11 +

ǫx+iǫy

2

Y 1 − 1

)

Y 1 mi

=

1


4 π


dΩ

(

ǫzY 10 +

−ǫx+iǫy

2

Y 11 +

ǫx+iǫy

2

Y 1 − 1

)

Y 1 mi

=

1


4 π

(

ǫzδmi 0 +

−ǫx+iǫy

2

δmi(−1)+

ǫx+iǫy

2

δmi 1

)






dΩ Y 00 ∗

(

ǫzY 10 +

−ǫx+iǫy

2

Y 11 +

ǫx+iǫy

2

Y 1 − 1

)

Y 1 mi





2

=

1

4 π

(

ǫ^2 zδmi 0 +

1

2

(ǫ^2 x+ǫ^2 y)(δmi(−1)+δmi 1 )

)

Lets assume the initial state is unpolarized, so we will sum overmiand divide by 3, the number of
differentmiallowed.


1
3


mi






dΩ Yℓ∗nmn

(

ǫzY 10 +
−ǫx+iǫy

2

Y 11 +

ǫx+iǫy

2

Y 1 − 1

)

Yℓimi





2
Free download pdf