29.6 Explicit 2p to 1s Decay Rate
Starting from the summary equation for electric dipole transitions,above,
Γtot=
αω^3 in
2 πc^2
∑
λ
∫
dΩγ
∣ ∣ ∣ ∣ ∣ ∣
√
4 π
3
∫∞
0
r^3 drR∗nnℓnRniℓi
∫
dΩYℓ∗nmn
(
ǫzY 10 +
−ǫx+iǫy
√
2
Y 11 +
ǫx+iǫy
√
2
Y 1 − 1
)
Yℓimi
∣ ∣ ∣ ∣ ∣ ∣
2
we specialize to the 2p to 1s decay,
Γtot=
αω^3 in
2 πc^2
∑
λ
∫
dΩγ
∣
∣
∣
∣∣
∣
√
4 π
3
∫∞
0
r^3 drR∗ 10 R 21
∫
dΩY 00 ∗
(
ǫzY 10 +
−ǫx+iǫy
√
2
Y 11 +
ǫx+iǫy
√
2
Y 1 − 1
)
Y 1 mi
∣
∣
∣
∣∣
∣
2
perform the radial integration,
∫∞
0
r^3 drR∗ 10 R 21 =
∫∞
0
r^3 dr
[
2
(
1
a 0
) (^32)
e−r/a^0
][
1
√
24
(
1
a 0
) (^52)
re−r/^2 a^0
]
=
1
√
6
(
1
a 0
) 4 ∫∞
0
r^4 dre−^3 r/^2 a^0
=
1
√
6
(
1
a 0
) 4 (
2 a 0
3
) 5 ∫∞
0
x^4 dxe−x
=
1
√
6
(
2
3
) 5
a 0 (4!)
= 4
√
6
(
2
3
) 5
a 0
and perform the angular integration.
∫
dΩ Y 00 ∗
(
ǫzY 10 +
−ǫx+iǫy
√
2
Y 11 +
ǫx+iǫy
√
2
Y 1 − 1
)
Y 1 mi
=
1
√
4 π
∫
dΩ
(
ǫzY 10 +
−ǫx+iǫy
√
2
Y 11 +
ǫx+iǫy
√
2
Y 1 − 1
)
Y 1 mi
=
1
√
4 π
(
ǫzδmi 0 +
−ǫx+iǫy
√
2
δmi(−1)+
ǫx+iǫy
√
2
δmi 1
)
∣
∣
∣
∣
∫
dΩ Y 00 ∗
(
ǫzY 10 +
−ǫx+iǫy
√
2
Y 11 +
ǫx+iǫy
√
2
Y 1 − 1
)
Y 1 mi
∣
∣
∣
∣
2
=
1
4 π
(
ǫ^2 zδmi 0 +
1
2
(ǫ^2 x+ǫ^2 y)(δmi(−1)+δmi 1 )
)
Lets assume the initial state is unpolarized, so we will sum overmiand divide by 3, the number of
differentmiallowed.
1
3
∑
mi
∣
∣
∣
∣
∫
dΩ Yℓ∗nmn
(
ǫzY 10 +
−ǫx+iǫy
√
2
Y 11 +
ǫx+iǫy
√
2
Y 1 − 1
)
Yℓimi
∣
∣
∣
∣
2