×
∫t
0
dt 2 ei(ωni+ω
′−ω)t 2
We have calculated all the amplitudes. Thefirst order and second order amplitudes should
be combined, then squared.
cn(t) = c(1)n (t) +c(2)n (t)
c(1)n;~k′ˆǫ′(t) =
e^2
2 iV m
√
ω′ω
ˆǫ·ˆǫ′δni
∫t
0
ei(ωni+ω
′−ω)t′
dt′
c(2)n;~k′ˆǫ′(t) =
−e^2
2 iV m^2 ̄h
√
ω′ω
∑
j
[
〈n|ˆǫ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji−ω
+
〈n|ˆǫ·~p|j〉〈j|ǫˆ′·~p|i〉
ω′+ωji
]∫t
0
dt 2 ei(ωni+ω
′−ω)t 2
cn;~k′ˆǫ′(t) =
δniˆǫ·ˆǫ′−^1
m ̄h
∑
j
[
〈n|ˆǫ′·~p|j〉〈j|ǫˆ·~p|i〉
ωji−ω
+
〈n|ˆǫ·~p|j〉〈j|ˆǫ′·~p|i〉
ω′+ωji
]
×
e^2
2 iV m
√
ω′ω
∫t
0
dt 2 ei(ωni+ω
′−ω)t 2
|c(t)|^2 =
∣ ∣ ∣ ∣ ∣ ∣
δniˆǫ·ˆǫ′−
1
m ̄h
∑
j
[
〈n|ǫˆ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji−ω
+
〈n|ˆǫ·~p|j〉〈j|ǫˆ′·~p|i〉
ω′+ωji
]
∣ ∣ ∣ ∣ ∣ ∣
2
×
e^4
4 V^2 m^2 ω′ω
∣ ∣ ∣ ∣ ∣ ∣
∫t
0
dt 2 ei(ωni+ω
′−ω)t 2
∣ ∣ ∣ ∣ ∣ ∣
2
|c(t)|^2 =
∣ ∣ ∣ ∣ ∣ ∣
δniˆǫ·ˆǫ′−
1
m ̄h
∑
j
[
〈n|ǫˆ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji−ω
+
〈n|ˆǫ·~p|j〉〈j|ǫˆ′·~p|i〉
ω′+ωji
]
∣ ∣ ∣ ∣ ∣ ∣
2
×
e^4
4 V^2 m^2 ω′ω
2 πtδ(ωni+ω′−ω)
Γ =
∫
V d^3 k′
(2π)^3
∣ ∣ ∣ ∣ ∣ ∣
δniˆǫ·ˆǫ′−
1
m ̄h
∑
j
[
〈n|ˆǫ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji−ω
+
〈n|ˆǫ·~p|j〉〈j|ˆǫ′·~p|i〉
ω′+ωji
]
∣ ∣ ∣ ∣ ∣ ∣
2
×
e^4
4 V^2 m^2 ω′ω
2 πδ(ωni+ω′−ω)
Γ =
∫
V ω′^2 dω′dΩ
(2πc)^3
∣ ∣ ∣ ∣ ∣ ∣
δniˆǫ·ˆǫ′−
1
m ̄h
∑
j
[
〈n|ˆǫ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji−ω
+
〈n|ˆǫ·~p|j〉〈j|ˆǫ′·~p|i〉
ω′+ωji
]
∣ ∣ ∣ ∣ ∣ ∣
2
×
e^4
4 V^2 m^2 ω′ω
2 πδ(ωni+ω′−ω)