Now we need to put the states in using an identity, then use the commutator withHto change~x
to~p.
1 =
∑
j
〈i|j〉 〈j|i〉
i ̄hǫˆ·ˆǫ′ =
∑
j
[(ˆǫ·~x)ij(ˆǫ′·~p)ji−(ˆǫ′·~p)ij(ˆǫ·~x)ji]
[H,~x] =
̄h
im
~p
̄h
im
(ˆǫ·~p)ij = (ˆǫ·[H,~x])ij
= ̄hωij(ˆǫ·~x)ij
(ˆǫ·~x)ij =
−i
mωij
(ˆǫ·~p)ij
i ̄hǫˆ·ˆǫ′ =
∑
j
[
−i
mωij
(ˆǫ·~p)ij(ˆǫ′·p)ji−
−i
mωji
(ˆǫ′·~p)ij(ˆǫ·~p)ji
]
=
∑
j
[
−i
mωij
(ˆǫ·~p)ij(ˆǫ′·p)ji+
−i
mωij
(ˆǫ′·~p)ij(ˆǫ·~p)ji
]
=
∑
j
−i
mωij
[(ˆǫ·~p)ij(ˆǫ′·p)ji+ (ˆǫ′·~p)ij(ˆǫ·~p)ji]
ǫˆ·ˆǫ′ =
− 1
m ̄h
∑
j
1
ωij
[(ˆǫ′·~p)ij(ˆǫ·~p)ji+ (ˆǫ·~p)ij(ˆǫ′·~p)ji]
(Reminder:ωij=Ei−h ̄Ejis just a number. (ˆǫ·~p)ij=〈i|ˆǫ·~p|j〉is a matrix element between states.)
We may nowcombine the termsfor elastic scattering.
dσelas
dΩ
=
(
e^2
4 πmc^2
) 2
∣ ∣ ∣ ∣ ∣ ∣
δiiˆǫ·ˆǫ′−
1
m ̄h
∑
j
[
〈i|ˆǫ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji−ω
+
〈i|ˆǫ·~p|j〉〈j|ˆǫ′·~p|i〉
ωji+ω
]
∣ ∣ ∣ ∣ ∣ ∣
2
δiiǫˆ·ˆǫ′ =
− 1
m ̄h
∑
j
[
〈i|ˆǫ′·~p|j〉〈j|ˆǫ·~p)|i〉
ωij
+
〈i|ˆǫ·~p|j〉〈j|ˆǫ′·~p|i〉
ωij
]
1
ωij
+
1
ωji±ω
=
ωji±ω+ωij
ωij(ωji±ω)
=
∓ω
ωji(ωji±ω)
dσelas
dΩ
=
(
e^2
4 πmc^2
) 2 (
1
m ̄h
) 2
∣ ∣ ∣ ∣ ∣ ∣
∑
j
[
ω〈i|ˆǫ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji(ωji−ω)
−
ω〈i|ˆǫ·~p|j〉〈j|ˆǫ′·~p|i〉
ωji(ωji+ω)
]
∣ ∣ ∣ ∣ ∣ ∣
2
This is anice symmetric form for elastic scattering. If computation of the matrix elements is
planned, it useful to again use the commutator to change~pinto~x.
dσelas
dΩ
=
(
e^2
4 πmc^2
) (^2) (
mω
̄h
) 2
∣
∣
∣∣
∣
∣
∑
j
ωji
[
〈i|ǫˆ′·~x|j〉 〈j|ˆǫ·~x|i〉
ωji−ω
−
〈i|ˆǫ·~x|j〉 〈j|ˆǫ′·~x|i〉
ωji+ω
]
∣
∣
∣∣
∣
∣
2