130_notes.dvi

(Frankie) #1

Now we need to put the states in using an identity, then use the commutator withHto change~x
to~p.


1 =


j

〈i|j〉 〈j|i〉

i ̄hǫˆ·ˆǫ′ =


j

[(ˆǫ·~x)ij(ˆǫ′·~p)ji−(ˆǫ′·~p)ij(ˆǫ·~x)ji]

[H,~x] =

̄h
im

~p
̄h
im

(ˆǫ·~p)ij = (ˆǫ·[H,~x])ij

= ̄hωij(ˆǫ·~x)ij

(ˆǫ·~x)ij =

−i
mωij

(ˆǫ·~p)ij

i ̄hǫˆ·ˆǫ′ =


j

[

−i
mωij

(ˆǫ·~p)ij(ˆǫ′·p)ji−

−i
mωji

(ˆǫ′·~p)ij(ˆǫ·~p)ji

]

=


j

[

−i
mωij

(ˆǫ·~p)ij(ˆǫ′·p)ji+
−i
mωij

(ˆǫ′·~p)ij(ˆǫ·~p)ji

]

=


j

−i
mωij

[(ˆǫ·~p)ij(ˆǫ′·p)ji+ (ˆǫ′·~p)ij(ˆǫ·~p)ji]

ǫˆ·ˆǫ′ =

− 1

m ̄h


j

1

ωij

[(ˆǫ′·~p)ij(ˆǫ·~p)ji+ (ˆǫ·~p)ij(ˆǫ′·~p)ji]

(Reminder:ωij=Ei−h ̄Ejis just a number. (ˆǫ·~p)ij=〈i|ˆǫ·~p|j〉is a matrix element between states.)


We may nowcombine the termsfor elastic scattering.


dσelas
dΩ

=

(

e^2
4 πmc^2

) 2

∣ ∣ ∣ ∣ ∣ ∣

δiiˆǫ·ˆǫ′−

1

m ̄h


j

[

〈i|ˆǫ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji−ω

+

〈i|ˆǫ·~p|j〉〈j|ˆǫ′·~p|i〉
ωji+ω

]

∣ ∣ ∣ ∣ ∣ ∣

2

δiiǫˆ·ˆǫ′ =

− 1

m ̄h


j

[

〈i|ˆǫ′·~p|j〉〈j|ˆǫ·~p)|i〉
ωij

+

〈i|ˆǫ·~p|j〉〈j|ˆǫ′·~p|i〉
ωij

]

1

ωij

+

1

ωji±ω

=

ωji±ω+ωij
ωij(ωji±ω)

=

∓ω
ωji(ωji±ω)

dσelas
dΩ

=

(

e^2
4 πmc^2

) 2 (

1

m ̄h

) 2

∣ ∣ ∣ ∣ ∣ ∣


j

[

ω〈i|ˆǫ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji(ωji−ω)


ω〈i|ˆǫ·~p|j〉〈j|ˆǫ′·~p|i〉
ωji(ωji+ω)

]

∣ ∣ ∣ ∣ ∣ ∣

2

This is anice symmetric form for elastic scattering. If computation of the matrix elements is
planned, it useful to again use the commutator to change~pinto~x.


dσelas
dΩ

=

(

e^2
4 πmc^2

) (^2) (

̄h


) 2



∣∣




j

ωji

[

〈i|ǫˆ′·~x|j〉 〈j|ˆǫ·~x|i〉
ωji−ω


〈i|ˆǫ·~x|j〉 〈j|ˆǫ′·~x|i〉
ωji+ω

]



∣∣



2
Free download pdf