130_notes.dvi

(Frankie) #1

Our problem to find a similarprobability and flux for Dirac theory is similarbut a little more
difficult. Start with the Dirac equation.


(
γμ


∂xμ

+

mc
̄h

)

ψ= 0

Since the wave function is a 4 component spinor, we will use theHermitian conjugate of the
Dirac equationinstead of the complex conjugate. Theγmatrices are Hermitian.


γμ

∂ψ
∂xμ

+

mc
̄h

ψ= 0

∂ψ†
∂(xμ)∗
γμ+

mc
̄h
ψ†= 0

The complex conjugate does nothing to the spatial component ofxμbut does change the sign of
the fourth component. To turn this back into a 4-vector expression, we can change the sign back by
multiplying the equation byγ 4 (from the right).


∂ψ†
∂xk

γk+

∂ψ†
∂(x 4 )∗

γ 4 +

mc
̄h

ψ†= 0

∂ψ†
∂xk

γkγ 4 −
∂ψ†
∂x 4

γ 4 γ 4 +
mc
̄h

ψ†γ 4 = 0


∂ψ†γ 4
∂xk

γk−

∂ψ†γ 4
∂x 4

γ 4 +

mc
̄h

ψ†γ 4 = 0

Definingψ ̄=ψ†γ 4 , theadjoint spinor, we can rewrite the Hermitian conjugate equation.



∂ψ ̄
∂xk

γk−
∂ψ ̄
∂x 4

γ 4 +
mc
̄h

ψ ̄= 0


∂ψ ̄
∂xμ

γμ+

mc
̄h

ψ ̄= 0

This is the adjoint equation. We now multiply the Dirac equation byψ ̄from the left and multiply
the adjoint equation byψfrom the right, and subtract.


ψγ ̄μ∂ψ
∂xμ

+

mc
̄h

ψψ ̄ +∂

ψ ̄
∂xμ

γμψ−

mc
̄h

ψψ ̄ = 0

ψγ ̄μ∂ψ
∂xμ

+

∂ψ ̄
∂xμ

γμψ= 0


∂xμ

(

ψγ ̄μψ

)

= 0

jμ=ψγ ̄μψ


∂xμ

jμ= 0
Free download pdf