130_notes.dvi

(Frankie) #1

We will be attempting to get the correct Schr ̈odinger equation to orderα^4 , like the one we used to
calculate the fine structure in Hydrogen. Since this energy term weare expanding is multiplied in
the equation byp^2 , we only need the first two terms in the expansion (order 1 and orderα^2 ).


~σ·~p

1

2 m

(

1 −

E(NR)+eA 0
2 mc^2

)

~σ·~pψA = (E(NR)+eA 0 )ψA

Thenormalization conditionwe derive from the Dirac equation is


j 0 =ψγ ̄ 4 ψ=ψ†γ 4 γ 4 ψ=ψ†ψ=ψ†AψA+ψ†BψB= 1.
ψB≈
pc
2 mc^2

ψA

ψA†ψA+ψB†ψB≈

(

1 +

( pc
2 mc^2

) 2 )

ψA†ψA= 1
(
1 +

p^2
4 m^2 c^2

)

ψA†ψA= 1

ψ≡

(

1 +

p^2
8 m^2 c^2

)

ψA

ψA≡

(

1 −

p^2
8 m^2 c^2

)

ψ

We’ve definedψ, the 2 component wavefunction we will use, in terms ofψAso that it is properly
normalized, at least to orderα^4. We cannow replaceψAin the equation.


~σ·~p

1

2 m

(

1 −

E(NR)+eA 0
2 mc^2

)

~σ·~p

(

1 −

p^2
8 m^2 c^2

)

ψ = (E(NR)+eA 0 )

(

1 −

p^2
8 m^2 c^2

)

ψ

This equation is correct, but not exactly what we want for the Schr ̈odinger equation. In particular,
we want toisolate the non-relativistic energy on the right of the equationwithout other


operators. We can solve the problem by multiplying both sides of the equation by


(

1 − p

2
8 m^2 c^2

)

.

(

1 −

p^2
8 m^2 c^2

)

~σ·~p

1

2 m

(

1 −

E(NR)+eA 0
2 mc^2

)

~σ·~p

(

1 −

p^2
8 m^2 c^2

)

ψ

=

(

1 −

p^2
8 m^2 c^2

)

(E(NR)+eA 0 )

(

1 −

p^2
8 m^2 c^2

)

ψ
(
~σ·~p~σ·~p
2 m


p^2
8 m^2 c^2

~σ·~p~σ·~p
2 m


~σ·~p
2 m

E(NR)+eA 0
2 mc^2

~σ·~p−

~σ·~p~σ·~p
2 m

p^2
8 m^2 c^2

)

ψ

=

(

(E(NR)+eA 0 )−
p^2
4 m^2 c^2

E(NR)−

p^2
8 m^2 c^2

eA 0 −eA 0
p^2
8 m^2 c^2

)

ψ

(
p^2
2 m



p^2
8 m^2 c^2

p^2
2 m


p^2
2 m

E(NR)

2 mc^2


e~σ·~pA 0 ~σ·~p
4 m^2 c^2


p^2
2 m

p^2
8 m^2 c^2

)

ψ

=

(

(E(NR)+eA 0 )−

p^2
4 m^2 c^2

E(NR)−

p^2
8 m^2 c^2
eA 0 −eA 0

p^2
8 m^2 c^2

)

ψ
(
p^2
2 m


p^4
8 m^3 c^2

−eA 0 −

e~σ·~pA 0 ~σ·~p
4 m^2 c^2

)

ψ=

(

E(NR)−

p^2
8 m^2 c^2

eA 0 −eA 0

p^2
8 m^2 c^2

)

ψ
Free download pdf