130_notes.dvi

(Frankie) #1

We willnormalize the statesso that there is one particle per unit volume.


ψ†ψ=

1

V

N^2

(

1 +

p^2 c^2
(|E|+mc^2 )^2

)

=

1

V

N^2

(

E^2 +m^2 c^4 + 2|E|mc^2 +p^2 c^2
(|E|+mc^2 )^2

)

=

1

V

N^2

(

2 E^2 + 2|E|mc^2
(|E|+mc^2 )^2

)

=

1

V

N^2

(

2 |E|

(|E|+mc^2 )

)

=

1

V

N=


|E|+mc^2
2 |E|V

We have thefour solutions with for a free particle with momentum~p. For solutions 1 and
2,Eis a positive number. For solutions 3 and 4,Eis negative.


ψ(1)~p =


|E|+mc^2
2 |E|V





1

0

pzc
E+mc^2
(px+ipy)c
E+mc^2




e

i(~p·~x−Et)/ ̄h ψ(2)
~p =


|E|+mc^2
2 |E|V





0

1

(px−ipy)c
E+mc^2
−pzc
E+mc^2




e

i(~p·~x−Et)/ ̄h

ψ(3)~p =



|E|+mc^2
2 |E|V





−pzc
−E+mc^2
−(px+ipy)c
−E+mc^2
1
0




e

i(~p·~x−Et)/ ̄h ψ(4)
~p =


|E|+mc^2
2 |E|V





−(px−ipy)c
−Ep+zmcc^2
−E+mc^2
0
1




e

i(~p·~x−Et)/ ̄h

The spinors areorthogonalfor states with the same momentum and the free particle waves are
orthogonal for different momenta. Note that the orthogonality condition is the same as for non-
relativistic spinors


ψ~p(r)†ψ(r

′)
p~′ =δrr

′δ(~p−~p′)

It is useful to write the plane wave states as a spinoru
(r)
~p times an exponential. Sakurai picks a
normalization of the spinor so thatu†utransforms like the fourth component of a vector. We will
follow the same convention.


ψ~p(r)≡


mc^2
|E|V

u(~pr)ei(~p·~x−Et)/ ̄h

u(1)~p =


E+mc^2
2 mc^2





1

0

pzc
E+mc^2
(px+ipy)c
E+mc^2




 u

(2)
~p =


E+mc^2
2 mc^2





0

1

(px−ipy)c
E+mc^2
−pzc
E+mc^2





u
(3)
~p =


−E+mc^2
2 mc^2





−pzc
−E+mc^2
−(px+ipy)c
−E+mc^2
1
0




 u

(4)
~p =


−E+mc^2
2 mc^2





−(px−ipy)c
−Ep+zmcc^2
−E+mc^2
0
1




Free download pdf