(~γ·~p)(~Σ·J~) = γipiΣjJj=−i
2piJjγiγmγnǫmnjγiγmγnǫmnj = 2(δijγ 5 γ 4 +ǫijkγk)
(~γ·~p)(~Σ·J~) = −ipiJj(δijγ 5 γ 4 +ǫijkγk) =−iγ 5 γ 4 ~p·J~−i~γ×~p·J~[H,K] = 2c(
γ 5 γ 4 ~p·J~+~γ×~p·J~−~γ×~p·J~−īh
2(~γ·~p))
[H,K] = 2c(
γ 1 γ 2 γ 3 γ 4 γ 4 ~p·J~−īh
2(~γ·~p))
[H,K] = 2c(
γ 1 γ 2 γ 3 ~p·J~−īh
2(~γ·~p))
[H,K] = 2c(
γ 1 γ 2 γ 3 ~p·(L~+̄h
2Σ)~ −i ̄h
2(~γ·~p))
[H,K] = 2c̄h
2(
γ 1 γ 2 γ 3 ~p·~Σ−i(~γ·~p))
[H,K] = 2c
̄h
2(i~p·~γ−i(~γ·~p)) = 0It is also useful to show that [K,J~] = 0 so that we have a mutually commuting set of operators to
define our eigenstates.
[K,J~] = [γ 4 Σ~·J~−̄h
2
γ 4 ,J~] = [γ 4 ,J~]~Σ·J~+γ 4 [~Σ·J,~J~]−̄h
2
[γ 4 ,J~]This will be zero if [γ 4 ,J~] = 0 and [Σ~·J,~J~] = 0.
[
γ 4 ,J~]
= [γ 4 ,~L+̄h
2~Σ] = ̄h
2[γ 4 ,Σ] = 0~
[
~Σ·J,~J~
]
= [~Σ·L,~ J~] + [~Σ·~Σ,J~] = [~Σ·L,~ J~] + [3,J~] = [~Σ·~L,J~]
[
~Σ·L,~J~
]
= [Li+
̄h
2Σi,ΣjLj] = [Li,ΣjLj] +
̄h
2[Σi,ΣjLj] = Σj[Li,Lj] +
̄h
2[Σi,Σj]Lj= i ̄hǫijkΣjLk+ 2īh
2ǫijkΣkLj=i ̄h(ǫijkΣjLk+ǫijkΣkLj) =i ̄h(ǫijkΣjLk−ǫikjΣkLj) =i ̄h(ǫijkΣjLk−ǫijkΣjLk)So for the Hydrogen atom,H,J^2 ,Jz, andKform a complete set of mutually commuting operators
for a system with four coordinatesx,y,zand electron spin.
36.13The Relativistic Interaction Hamiltonian
Theinteraction Hamiltonianfor the Dirac equation can be deduced in several ways. The simplest
for now is to just use the same interaction term that we had for electromagnetism
Hint=−1
cjμAμand identify the probability current multiplied by the charge (-e) as the current that couples to the
EM field.
jμ(EM)=−eicψγ ̄μψ