130_notes.dvi

(Frankie) #1


(

∂F
∂ρ−

κF
ρ

)

(

∂G
∂ρ+

κG
ρ

)


=



(√

k 2
k 1 −


ρ

)

G

(√

k 1
k 2 +


ρ

)

F





(


∂ρ−

κ
ρ

)

F−

(√

k 2
k 1 −


ρ

)

G

(


∂ρ+

κ
ρ

)

G−

(√

k 1
k 2 +


ρ

)

F


= 0

With the guidance of the non-relativistic solutions, we willpostulate a solution of the form


F=e−ρρs

∑∞

m=0

amρm=e−ρ

∑∞

m=0

amρs+m

G=e−ρρs

∑∞

m=0

bmρm=e−ρ

∑∞

m=0

bmρs+m.

The exponential will make everything go to zero for largeρif the power series terminates. We need
to verify that this is a solution nearρ= 0 if we pick the righta 0 ,b 0 , ands. We now substitute these
postulated solutions into the equations toobtain recursion relations.


(

∂ρ


κ
ρ

)

F−

(√

k 2
k 1



ρ

)

G= 0

(


∂ρ

+

κ
ρ

)

G−

(√

k 1
k 2

+


ρ

)

F= 0

∑∞

m=0

(

−amρs+m+am(s+m)ρs+m−^1 −amκρs+m−^1 −bm


k 2
k 1

ρs+m+bmZαρs+m−^1

)

= 0

∑∞

m=0

(

−bmρs+m+bm(s+m)ρs+m−^1 +bmκρs+m−^1 −am


k 1
k 2

ρs+m−amZαρs+m−^1

)

= 0

(

−am+am+1(s+m+ 1)−am+1κ−bm


k 2
k 1

+bm+1Zα

)

= 0

(

−bm+bm+1(s+m+ 1) +bm+1κ−am


k 1
k 2

−am+1Zα

)

= 0

−am+ (s+m+ 1−κ)am+1−


k 2
k 1
bm+Zαbm+1= 0

−bm+ (s+m+ 1 +κ)bm+1−


k 1
k 2

am−Zαam+1= 0

−am+ (s+m+ 1−κ)am+1−


k 2
k 1

bm+Zαbm+1= 0



k 1
k 2

am−Zαam+1−bm+ (s+m+ 1 +κ)bm+1= 0

For the lowest order termρs, we need to have a solution without lower powers. This means that we

Free download pdf