(
∂F
∂ρ−
κF
ρ
)
(
∂G
∂ρ+
κG
ρ
)
=
(√
k 2
k 1 −
Zα
ρ
)
G
(√
k 1
k 2 +
Zα
ρ
)
F
(
∂
∂ρ−
κ
ρ
)
F−
(√
k 2
k 1 −
Zα
ρ
)
G
(
∂
∂ρ+
κ
ρ
)
G−
(√
k 1
k 2 +
Zα
ρ
)
F
= 0
With the guidance of the non-relativistic solutions, we willpostulate a solution of the form
F=e−ρρs
∑∞
m=0
amρm=e−ρ
∑∞
m=0
amρs+m
G=e−ρρs
∑∞
m=0
bmρm=e−ρ
∑∞
m=0
bmρs+m.
The exponential will make everything go to zero for largeρif the power series terminates. We need
to verify that this is a solution nearρ= 0 if we pick the righta 0 ,b 0 , ands. We now substitute these
postulated solutions into the equations toobtain recursion relations.
(
∂
∂ρ
−
κ
ρ
)
F−
(√
k 2
k 1
−
Zα
ρ
)
G= 0
(
∂
∂ρ
+
κ
ρ
)
G−
(√
k 1
k 2
+
Zα
ρ
)
F= 0
∑∞
m=0
(
−amρs+m+am(s+m)ρs+m−^1 −amκρs+m−^1 −bm
√
k 2
k 1
ρs+m+bmZαρs+m−^1
)
= 0
∑∞
m=0
(
−bmρs+m+bm(s+m)ρs+m−^1 +bmκρs+m−^1 −am
√
k 1
k 2
ρs+m−amZαρs+m−^1
)
= 0
(
−am+am+1(s+m+ 1)−am+1κ−bm
√
k 2
k 1
+bm+1Zα
)
= 0
(
−bm+bm+1(s+m+ 1) +bm+1κ−am
√
k 1
k 2
−am+1Zα
)
= 0
−am+ (s+m+ 1−κ)am+1−
√
k 2
k 1
bm+Zαbm+1= 0
−bm+ (s+m+ 1 +κ)bm+1−
√
k 1
k 2
am−Zαam+1= 0
−am+ (s+m+ 1−κ)am+1−
√
k 2
k 1
bm+Zαbm+1= 0
−
√
k 1
k 2
am−Zαam+1−bm+ (s+m+ 1 +κ)bm+1= 0
For the lowest order termρs, we need to have a solution without lower powers. This means that we