The matrix element is to be taken with the initialelectron at rest, ̄hk << mc, the final electron
(approximately) at rest, and hence the intermediate electron at rest, due to a delta function of
momentum conservation that comes out of the spatial integral.
Let the positive energy spinors be written as
u( 0 r)=(
χ(r)
0)
and the “negative energy” spinors as
u(r′′)
0 =(
0
χ(r
′′))
The matrixγ 4 γiconnect the positive and “negative energy” spinors so that the amplitude can be
written in terms of two component spinors and Pauli matrices.
γ 4 γi =(
0 −iσi
−iσi 0)
u(r
′′)†
0 iγ^4 γiu(r)
0 =(
0 ,χ(r′′)†)
(
0 σi
σi 0)(
χ(r)
0)
=χ(r′′)†
σiχ(r)c(2)p~′,r′;k~′ǫˆ′(t) =
ie^2
4 mV√
ω′ω∑
r′′=3, 4[〈 0 r′′|iγ 4 γnǫ′n| 0 r〉〈 0 r′|iγ 4 γnǫn| 0 r′′〉+〈 0 r′′|iγ 4 γnǫn| 0 r〉〈 0 r′|iγ 4 γnǫ′n| 0 r′′〉]∫t0dt 2 ei(E′−E+ ̄hω′− ̄hω)t 2 / ̄hc(2)p~′,r′;k~′ǫˆ′(t) =ie^2
4 mV√
ω′ω∑
r′′=3, 4[
(χ(r′′)†
~σ·ǫˆ′χ(r))(χ(r′)†
~σ·ǫχˆ(r′′)
) + (χ(r′′)†
~σ·ˆǫχ(r))(χ(r′)†
~σ·ǫˆ′χ(r′′)
)]
∫t0dt 2 ei(E′−E+ ̄hω′− ̄hω)t 2 / ̄hc
(2)
p~′,r′;k~′ǫˆ′(t) =ie^2
4 mV√
ω′ω∑
r′′=3, 4[
(χ(r′)†
~σ·ǫχˆ(r′′)
)(χ(r′′)†
~σ·ˆǫ′χ(r)) + (χ(r′)†
~σ·ǫˆ′χ(r′′)
)(χ(r′′)†
~σ·ˆǫχ(r))]
∫t0dt 2 ei(E′−E+ ̄hω′− ̄hω)t 2 / ̄hc(2)~
p′,r′;k~′ǫˆ′
(t) =
ie^2
4 mV√
ω′ωχ(r′)†[
(~σ·ǫˆ)(~σ·ǫˆ′) + (~σ·ˆǫ′)(~σ·ˆǫ)]
χ(r)∫t0dt 2 ei(E′−E+ ̄hω′−hω ̄)t 2 / ̄hc(2)p~′,r′;k~′ǫˆ′(t) =ie^2
4 mV√
ω′ωχ(r′)†
[σiσj+σjσi] ˆǫiǫˆ′jχ(r)∫t0dt 2 ei(E′−E+ ̄hω′− ̄hω)t 2 / ̄hc
(2)
p~′,r′;k~′ǫˆ′(t) =ie^2
2 mV√
ω′ωχ(r′)†
ˆǫ·ǫˆ′χ(r)∫t0dt 2 ei(E′−E+ ̄hω′− ̄hω)t 2 / ̄hc(2)p~′,r′;k~′ǫˆ′(t) =ie^2
2 mV√
ω′ωˆǫ·ǫˆ′δrr′∫t0dt 2 ei(E′−E+ ̄hω′− ̄hω)t 2 / ̄h