130_notes.dvi

(Frankie) #1

The matrix element is to be taken with the initialelectron at rest, ̄hk << mc, the final electron
(approximately) at rest, and hence the intermediate electron at rest, due to a delta function of
momentum conservation that comes out of the spatial integral.


Let the positive energy spinors be written as


u( 0 r)=

(

χ(r)
0

)

and the “negative energy” spinors as


u(r

′′)
0 =

(

0

χ(r
′′)

)

The matrixγ 4 γiconnect the positive and “negative energy” spinors so that the amplitude can be
written in terms of two component spinors and Pauli matrices.


γ 4 γi =

(

0 −iσi
−iσi 0

)

u(r


′′)†
0 iγ^4 γiu

(r)
0 =

(

0 ,χ(r

′′)†)

(

0 σi
σi 0

)(

χ(r)
0

)

=χ(r

′′)†
σiχ(r)

c(2)p~′,r′;k~′ǫˆ′(t) =
ie^2
4 mV


ω′ω


r′′=3, 4

[〈 0 r′′|iγ 4 γnǫ′n| 0 r〉〈 0 r′|iγ 4 γnǫn| 0 r′′〉+〈 0 r′′|iγ 4 γnǫn| 0 r〉〈 0 r′|iγ 4 γnǫ′n| 0 r′′〉]

∫t

0

dt 2 ei(E

′−E+ ̄hω′− ̄hω)t 2 / ̄h

c(2)p~′,r′;k~′ǫˆ′(t) =

ie^2
4 mV


ω′ω


r′′=3, 4

[

(χ(r

′′)†
~σ·ǫˆ′χ(r))(χ(r

′)†
~σ·ǫχˆ(r

′′)
) + (χ(r

′′)†
~σ·ˆǫχ(r))(χ(r

′)†
~σ·ǫˆ′χ(r

′′)
)

]

∫t

0

dt 2 ei(E

′−E+ ̄hω′− ̄hω)t 2 / ̄h

c
(2)
p~′,r′;k~′ǫˆ′(t) =

ie^2
4 mV


ω′ω


r′′=3, 4

[

(χ(r

′)†
~σ·ǫχˆ(r

′′)
)(χ(r

′′)†
~σ·ˆǫ′χ(r)) + (χ(r

′)†
~σ·ǫˆ′χ(r

′′)
)(χ(r

′′)†
~σ·ˆǫχ(r))

]

∫t

0

dt 2 ei(E

′−E+ ̄hω′− ̄hω)t 2 / ̄h

c(2)~
p′,r′;k~′ǫˆ′
(t) =
ie^2
4 mV


ω′ω

χ(r

′)†[

(~σ·ǫˆ)(~σ·ǫˆ′) + (~σ·ˆǫ′)(~σ·ˆǫ)

]

χ(r)

∫t

0

dt 2 ei(E

′−E+ ̄hω′−hω ̄)t 2 / ̄h

c(2)p~′,r′;k~′ǫˆ′(t) =

ie^2
4 mV


ω′ω

χ(r

′)†
[σiσj+σjσi] ˆǫiǫˆ′jχ(r)

∫t

0

dt 2 ei(E

′−E+ ̄hω′− ̄hω)t 2 / ̄h

c
(2)
p~′,r′;k~′ǫˆ′(t) =

ie^2
2 mV


ω′ω

χ(r

′)†
ˆǫ·ǫˆ′χ(r)

∫t

0

dt 2 ei(E

′−E+ ̄hω′− ̄hω)t 2 / ̄h

c(2)p~′,r′;k~′ǫˆ′(t) =

ie^2
2 mV


ω′ω

ˆǫ·ǫˆ′δrr′

∫t

0

dt 2 ei(E

′−E+ ̄hω′− ̄hω)t 2 / ̄h
Free download pdf