The matrix element is to be taken with the initialelectron at rest, ̄hk << mc, the final electron
(approximately) at rest, and hence the intermediate electron at rest, due to a delta function of
momentum conservation that comes out of the spatial integral.
Let the positive energy spinors be written as
u( 0 r)=
(
χ(r)
0
)
and the “negative energy” spinors as
u(r
′′)
0 =
(
0
χ(r
′′)
)
The matrixγ 4 γiconnect the positive and “negative energy” spinors so that the amplitude can be
written in terms of two component spinors and Pauli matrices.
γ 4 γi =
(
0 −iσi
−iσi 0
)
u(r
′′)†
0 iγ^4 γiu
(r)
0 =
(
0 ,χ(r
′′)†)
(
0 σi
σi 0
)(
χ(r)
0
)
=χ(r
′′)†
σiχ(r)
c(2)p~′,r′;k~′ǫˆ′(t) =
ie^2
4 mV
√
ω′ω
∑
r′′=3, 4
[〈 0 r′′|iγ 4 γnǫ′n| 0 r〉〈 0 r′|iγ 4 γnǫn| 0 r′′〉+〈 0 r′′|iγ 4 γnǫn| 0 r〉〈 0 r′|iγ 4 γnǫ′n| 0 r′′〉]
∫t
0
dt 2 ei(E
′−E+ ̄hω′− ̄hω)t 2 / ̄h
c(2)p~′,r′;k~′ǫˆ′(t) =
ie^2
4 mV
√
ω′ω
∑
r′′=3, 4
[
(χ(r
′′)†
~σ·ǫˆ′χ(r))(χ(r
′)†
~σ·ǫχˆ(r
′′)
) + (χ(r
′′)†
~σ·ˆǫχ(r))(χ(r
′)†
~σ·ǫˆ′χ(r
′′)
)
]
∫t
0
dt 2 ei(E
′−E+ ̄hω′− ̄hω)t 2 / ̄h
c
(2)
p~′,r′;k~′ǫˆ′(t) =
ie^2
4 mV
√
ω′ω
∑
r′′=3, 4
[
(χ(r
′)†
~σ·ǫχˆ(r
′′)
)(χ(r
′′)†
~σ·ˆǫ′χ(r)) + (χ(r
′)†
~σ·ǫˆ′χ(r
′′)
)(χ(r
′′)†
~σ·ˆǫχ(r))
]
∫t
0
dt 2 ei(E
′−E+ ̄hω′− ̄hω)t 2 / ̄h
c(2)~
p′,r′;k~′ǫˆ′
(t) =
ie^2
4 mV
√
ω′ω
χ(r
′)†[
(~σ·ǫˆ)(~σ·ǫˆ′) + (~σ·ˆǫ′)(~σ·ˆǫ)
]
χ(r)
∫t
0
dt 2 ei(E
′−E+ ̄hω′−hω ̄)t 2 / ̄h
c(2)p~′,r′;k~′ǫˆ′(t) =
ie^2
4 mV
√
ω′ω
χ(r
′)†
[σiσj+σjσi] ˆǫiǫˆ′jχ(r)
∫t
0
dt 2 ei(E
′−E+ ̄hω′− ̄hω)t 2 / ̄h
c
(2)
p~′,r′;k~′ǫˆ′(t) =
ie^2
2 mV
√
ω′ω
χ(r
′)†
ˆǫ·ǫˆ′χ(r)
∫t
0
dt 2 ei(E
′−E+ ̄hω′− ̄hω)t 2 / ̄h
c(2)p~′,r′;k~′ǫˆ′(t) =
ie^2
2 mV
√
ω′ω
ˆǫ·ǫˆ′δrr′
∫t
0
dt 2 ei(E
′−E+ ̄hω′− ̄hω)t 2 / ̄h