Mathematical Foundation of Computer Science

(Chris Devlin) #1

dharm



  • 1 Discrete Theory, Relations and Functions Acknowledgements .............................................................................................................ix

    • 1.1 Introduction.........................................................................................................................

    • 1.2 Elementary Theory of Sets

    • 1.3 Set Rules & Sets Combinations..........................................................................................

      • 1.3.1 Rule of Equality......................................................................................................

      • 1.3.2 Study of Sets Combinations...................................................................................

      • 1.3.3 Power Set................................................................................................................

      • 1.3.4 Multisets.................................................................................................................

      • 1.3.5 Ordered Sets...........................................................................................................

      • 1.3.6 Cartesian Products.................................................................................................



    • 1.4 Relations

      • 1.4.1 Binary Relation......................................................................................................

      • 1.4.2 Equivalence Relation...........................................................................................

      • 1.4.3 Pictorial Representation of Relations.................................................................

      • 1.4.4 Composite Relation..............................................................................................

      • 1.4.5 Ordering Relation.................................................................................................



    • 1.5 Functions

      • 1.5.1 Classification of Functions...................................................................................

      • 1.5.2 Composition of Functions....................................................................................

      • 1.5.3 Inverse Functions.................................................................................................

      • 1.5.4 Recursively Defined Functions............................................................................



    • 11.6 Mathematical Induction & Piano’s Axioms.....................................................................



  • 2 Discrete Numeric Functions and Generating Functions

    • 2.1 Introduction.......................................................................................................................

    • 2.2 Properties of Numeric Functions.....................................................................................

      • 2.2.1 Addition of Numeric Functions...........................................................................

      • 2.2.2 Multiplication of Numeric Functions..................................................................

      • 2.2.3 Multiplication with Scalar Factor to Numeric Function...................................

      • 2.2.4 Quotient of Numeric Functions...........................................................................

      • 2.2.5 Modulus of Numeric Function.............................................................................

      • 2.2.6 SI an and S–I an....................................................................................................... d:\N-com\TITLE.pm5 xi

      • 2.2.7 Accumulated Sum of Numeric Functions...........................................................

      • 2.2.8 Forward Difference & Backward Difference......................................................

      • 2.2.9 Convolution of Numeric Functions.....................................................................



    • 2.3 Asymptotic Behavior (Performance) of Numeric Functions...........................................

      • 2.3.1 Big—Oh (O) Notation...........................................................................................

      • 2.3.2 Omega (Ω) Notation.............................................................................................

      • 2.3.3 Theta (θ) Notation................................................................................................



    • 2.4 Generating Functions.......................................................................................................

    • 2.5 Application of Generating Function to Solve Combinatorial Problems.........................



  • 3 Recurrence Relations with Constant Coefficients

    • 3.1 Introduction.......................................................................................................................

      • (Linear Recurrence Relation with Constant Coefficients LRRCC)................................ 3.2 Recurrence Relation for Discrete Numeric Functions



    • 3.3 Finding the Solution of LRRCC........................................................................................

      • 3.3.1 Method of Finding Homogenous Solution..........................................................

      • 3.3.2 Method of Finding Particular Solution...............................................................



    • 3.4 Alternate Method Finding Solution of LRRCC by Generating Function......................

    • 3.5 Common Recurrences from Algorithms...........................................................................

    • 3.6 Method for Solving Recurrences.......................................................................................

      • 3.6.1 Iteration Method..................................................................................................

      • 3.6.2 Master Theorem...................................................................................................

      • 3.6.3 Substitution Method............................................................................................



    • 3.7 Matrix Multiplication........................................................................................................



  • 4 Algebraic Structure

    • 4.1 Introduction.......................................................................................................................

    • 4.2 Groups

    • 4.3 Semi Subgroup...................................................................................................................

    • 4.4 Complexes..........................................................................................................................

    • 4.5 Product Semi Groups........................................................................................................

    • 4.6 Permutation Groups..........................................................................................................

    • 4.7 Order of a Group................................................................................................................

    • 4.8 Subgroups..........................................................................................................................

    • 4.9 Cyclic Groups.....................................................................................................................

    • 4.10 Cosets.................................................................................................................................

    • 4.11 Group Mapping..................................................................................................................

    • 4.12 Rings...................................................................................................................................

    • 4.13 Fields..................................................................................................................................



  • 5 Propositional Logic

    • 5.1 Introduction to Logic.......................................................................................................

    • 5.2 Symbolization of Statements..........................................................................................

    • 5.3 Equivalence of Formula.................................................................................................. d:\N-com\TITLE.pm5 xii

    • 5.4 Propositional Logic..........................................................................................................

      • 5.4.1 Well Formed Formula........................................................................................

      • 5.4.2 Immediate Subformula......................................................................................

      • 5.4.3 Subformula

      • 5.4.4 Formation Tree of a Formula............................................................................

      • 5.4.5 Truth Table.........................................................................................................



    • 5.5 Tautology.........................................................................................................................

    • 5.6 Theory of Inference.........................................................................................................

      • 5.6.1 Validity by Truth Table......................................................................................

      • 5.6.2 Natural Deduction Method................................................................................

      • 5.6.3 Analytical Tableaux Method (ATM)..................................................................



    • 5.7 Predicate Logic................................................................................................................

      • 5.7.1 Symbolization of Statements using Predicate..................................................

      • 5.7.2 Variables and Quantifiers..................................................................................

      • 5.7.3 Free and Bound Variables.................................................................................



    • 5.8 Inference Theory of Predicate Logic...............................................................................



  • 6 Lattice Theory

    • 6.1 Introduction.....................................................................................................................

    • 6.2 Partial Ordered Set

    • 6.3 Representation of a Poset (Hasse Diagram)..................................................................

    • 6.4 Lattices

      • 6.4.1 Properties of Lattices.........................................................................................

      • 6.4.2 Lattices and Algebraic Systems........................................................................

      • 6.4.3 Classes of Lattices..............................................................................................

      • 6.4.4 Product of Lattices.............................................................................................

      • 6.4.5 Lattice Homomorphism.....................................................................................





  • 7 Introduction to Languages and Finite Automata

    • 7.1 Basic Concepts of Automata Theory..............................................................................

      • 7.1.1 Alphabets............................................................................................................

      • 7.1.2 Strings.................................................................................................................

      • 7.1.3 Power of Σ

      • 7.1.4 Languages



    • 7.2 Deterministic Finite State Automata (DFA).................................................................

      • 7.2.1 Definition

      • 7.2.2 Representation of a DFA

      • 7.2.3 δ-head

      • 7.2.4 Language of a DFA



    • 7.3 Nondeterministic Finite State Automata (NFA)...........................................................

      • 7.3.1 Definition

      • 7.3.2 Representation

      • 7.3.3 δ-head

        • 7.3.4 Properties of δ-head............................................................................................ d:\N-com\TITLE.pm5 xiii

        • 7.3.5 Language of an NFA







  • 8 Equivalence of NFA and DFA

    • 8.1 Relationship between NFA & DFA................................................................................

    • 8.2 Method of Conversion from NFA to DFA......................................................................

    • 8.3 Finite Automata with ∈-moves.......................................................................................

      • 8.3.1 NFA with ∈-moves.............................................................................................

      • 8.3.2 δ∈-head

      • 8.3.3 Language of NFA with ∈-moves........................................................................

      • 8.3.4 Method of Conversion from NFA with ∈-moves to NFA.................................

      • 8.3.5 Equivalence of NFA with ∈-moves to DFA.......................................................





  • 9 Regular Expressions

    • 9.1 Introduction to Regular Expressions.............................................................................

    • 9.2 Definition of Regular Expression...................................................................................

    • 9.3 Equivalence of Regular Expression and Finite Automata...........................................

      • 9.3.1 Construction of NFA with ∈-moves from Regular Expression........................

      • 9.3.2 Construction of DFA from Regular Expression................................................



    • 9.4 Finite Automata to Regular Expression........................................................................

      • 9.4.1 Construction of DFA from Regular Expression................................................



    • 9.5 Construction of Regular Expression from DFA.............................................................

    • 9.6 Finite Automatons with Output.....................................................................................

      • 9.6.1 Melay Automaton...............................................................................................

      • 9.6.2 Moore Automaton...............................................................................................



    • 9.7 Equivalence of Melay & Moore Automatons.................................................................

      • (From Moore Machine-to-Melay Machine)....................................................... 9.7.1 Equivalent Machine Construction

      • 9.7.2 Melay Machine-to-Moore Machine....................................................................





  • 10 Regular and Nonregular Languages

    • 10.1 Introduction.....................................................................................................................

    • 10.2 Pumping Lemma for Regular Languages......................................................................

    • 10.3 Regular and Nonregular Languages Examples............................................................

    • 10.4 Properties of Regular Languages...................................................................................

    • 10.5 Decision Problems of Regular Languages......................................................................

      • 10.5.1 Emptiness Problem............................................................................................

      • 10.5.2 Finiteness Problem.............................................................................................

      • 10.5.3 Membership Problem.........................................................................................

      • 10.5.4 Equivalence Problem..........................................................................................

      • 10.5.5 Minimization Problem and Myhill Nerode Theorem (Optimizing DFA)........



    • 11 Non-Ragular Grammars d:\N-com\TITLE.pm5 xiv

      • 11.1 Introduction.....................................................................................................................

      • 11.2 Definition of the Grammar.............................................................................................

      • 11.3 Classification of Grammars—Chomesky’s Heirarchy...................................................

      • 11.4 Sentential Form...............................................................................................................

      • 11.5 Context Free Grammars (CFG) & Context Free Languages (CFL)

      • 11.6 Derivation Tree (Parse Tree)..........................................................................................

        • 11.6.1 Parse Tree Construction....................................................................................



      • 11.7 Ambiguous Grammar......................................................................................................

        • 11.7.1 Definition

        • 11.7.2 Ambiguous Context Free Language..................................................................



      • 11.8 Pushdown Automaton.....................................................................................................

      • 11.9 Simplification of Grammars...........................................................................................





  • 11.10 Chomsky Normal Form...................................................................................................

  • 11.11 Greibach Normal Form...................................................................................................

  • 11.12 Pumping Lemma for CFLs..............................................................................................

  • 11.13 Properties of Context Free Languages...........................................................................

  • 11.14 Decision Problems of Context Free Languages.............................................................

  • 11.15 Undecided Problems of Context Free Languages.........................................................

    • 12 Introduction to Turning Machine

      • 12.1 Introduction.....................................................................................................................

      • 12.2 Basic Features of a Turing Machine..............................................................................

        • 12.2.1 Abstract View of a Turing Machine..................................................................

        • 12.2.2 Definition of a Turing Machine.........................................................................

        • 12.2.3 Instantaneous Description of a Turing Machine..............................................

        • 12.2.4 Representation of a Turing Machine................................................................



      • 12.3 Language of a Turing Machine.......................................................................................

      • 12.4 General Problems of a Turing Machine.........................................................................

      • 12.5 Turing Machine is the Computer of Natural Functions...............................................

        • A.1 Introduction..................................................................................................................... Appendix—Boolean Algebra

        • A.2 Definition of Boolean Algebra.........................................................................................

        • A.3 Theorems of Boolean Algebra.........................................................................................

        • A.4 Boolean Functions...........................................................................................................

        • A.5 Simplification of Boolean Functions..............................................................................

        • A.6 Forms of Boolean Functions...........................................................................................

        • A.7 Simplification of Boolean Functions Using K-map.......................................................







Free download pdf