DHARM184 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE= k∪=i
1 δ(,)pk a
= { r 1 , r 2 , r 3 , ............, rj}‡
Abstract view of the automata during scanning the string x = y a is shown below in
Fig. 7.20.ÞNFA q............y............NNFA pp 12 / /....../pi............y............Nastatea⇒
NFA rr 12 / /....../rj............y............NastateFig. 7.20
Example7.11. Fig. 7.21 shows a NFA N (similar to the automaton discussed in previous exam-
ple), then check its nature of acceptance over the string 101101.q 0 q 2 q 3
1
q 1
0 10, 1 0, 1N
Fig. 7.21
Sol. Above NFA N can be defined as,
N = ( {q 0 , q 1 , q 2 , q 3 }, {0, 1}, δ, q 0 , {q 3 });
where δ’s are shown in the following transition table (TT),
StateInput symbol
0
{q 0 ,qq13}}F
F
{q
q
q
q0
1
2
31
{
{
{
{q
q
q
q0
2
3
3}
}
}
}‡ Case I, j = i, when all the state have single transition on each symbol of the set Σ then, † it
returns to exactly similar number of state that is equal to I or { r 1 , r 2 , r 3 , ............, ri}.
Case II, j = 0, when there is no transition arc over symbol a from state pk (∀k = 1 to i).
Case III, j < i or j > i, depending upon the nature of transition from state pk on input symbol a.
Above cases exists only because of dynamic nature of NFA.