Mathematical Foundation of Computer Science

(Chris Devlin) #1
DHARM
N-COM\CMS12-1.PM5

340 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE


  • replace starting symbol a by X, then reaches to the first b and replace by Y

  • move back and find next starting symbol a and repeat the previous step

  • until found X followed by Y
    Lets input string is ‘aabb’. Then applying above steps it will converted on ‘XXYY’
    The machine will terminate certainly with the condition that last X is followed by Y.
    Let q 0 be the starting state, Q = {q 0 , q 1 , q 2 , q 3 , q 4 }, Σ = {a, b}, Γ = {a, b, X, Y, B} and halting
    state F = {q 4 } then Transition function (∂) are follows:
    •δ(q 0 , a) = (q 1 , X, R)
    •δ(q 1 , a) = (q 1 , a, R) and δ(q 1 , Y) = (q 1 , Y, R) // skip all a’s and Y’s and move right and
    reaches to first b (corresponds to first a)
    •δ(q 1 , b) = (q 2 , Y, L) // replace b by Y and move left
    •δ(q 2 , a) = (q 2 , a, L) and δ(q 2 , Y) = (q 2 , Y, L) // skip all a’s and Y’s and move left and
    reaches to X
    •δ(q 2 , X) = (q 0 , X, R) // X will remain X and move right
    •δ(q 0 , Y) = (q 3 , Y, R) // if no more symbol left then machine certainly reaches to Y It
    remains Y and move to right
    •δ(q 3 , Y) = (q 3 , Y, R) // skip all Y’s and reaches to blank
    •δ(q 3 , B) = (q 4 , B, R) // blank remains blank and halt
    State Diagram


q 0 q 1

q 4

( , X, R)a ( , Y, L)b q
2

(Y, Y, R)

q 3

(, ,R)aa
(Y, Y, R)

(B, B, R)

(X, X, R)

(Y, Y, R)

(, ,L)aa

(Y, Y, L)

Fig. 12.9

ID View’s (Let’s trace the moves of TM for the string ‘aabb’)
(Start) q 0 a a b b X q 1 a b b X a q 1 b b X q 2 a Y b q 2 X a Y b X q 0 a Y b
X X q 1 Y b X X Y q 1 b X X q 2 Y Y X q 2 X Y Y X X q 0 Y Y X X Y q 3 Y
X X Y Y q 3 B X X Y Y B q 4 B (Halt)

Example 12.2. Construct the Turing machine for the Context Sensitive Language


L = {ai bi ai | i ≥ 0}.
Sol. Here the language L consist of strings of equal number of a’s followed by equal number of
b’s followed by equal number of a’s resembling {aba, aabbaa, aaabbbaaa....}. So to check up
this condition we apply following logic:

Free download pdf