GAS TURBINE POWER PLANT 299
(2) Heat supplied per hg of air circulation.
(3) The thermal efficiency of the cycle. Mass of the fuel may be neglected.
Solution. Pl = 1 bar
P 2 = 5 bar
P 3 = 5 – 0.1 = 4.9 bar
P 4 = 1 bar
T 1 = 20 + 273 = 293 K
T 3 = 680 + 273 = 953 K
ηcompressor = 85%
ηturbine = 80%
ηcombustion = 85%
For air and gases: cP′ = 1.024 kJ/kgK
y = 1.4
Power developed by the plant,
P = 1065 kW
(1) The quantity of air circulation, ma =?
For isentropic compression 1 – 2,2
1T
T=(1)/
2
1p
pγ− γ
=5 (1.4 1) / 1.4
1−
= 1.584T 2 = 293 × 1.584 = 464 K
Now,ηcompressor =^21
21(T T )
(T′ T )−
−= 0.850.85 =
2(464 293)
(T′ 293)−
−
T 2 ′ = 494 K
For isentropic expansion process 3 – 4,4
3T
T =(1)/
4
3P
Pγ− γ
=1 (1.4 1) /1.4
4.9−
= 0.635T 4 = 953 × 0.635 = 605 KNow, ηturbine =34
34(T T )
(T T )− ′
− = 0.800.85
0.80=^4(953 T )
(953 605)− ′
−35 bar
4.^9bar1 bar2 2 ′(^2931)
953
T(K)
4
4 ′
s
Fig. 9.31