Power Plant Engineering

(Ron) #1

GAS TURBINE POWER PLANT 299


(2) Heat supplied per hg of air circulation.
(3) The thermal efficiency of the cycle. Mass of the fuel may be neglected.
Solution. Pl = 1 bar
P 2 = 5 bar
P 3 = 5 – 0.1 = 4.9 bar
P 4 = 1 bar
T 1 = 20 + 273 = 293 K
T 3 = 680 + 273 = 953 K
ηcompressor = 85%
ηturbine = 80%
ηcombustion = 85%
For air and gases: cP′ = 1.024 kJ/kgK
y = 1.4
Power developed by the plant,
P = 1065 kW
(1) The quantity of air circulation, ma =?
For isentropic compression 1 – 2,

2
1

T
T

=

(1)/
2
1

p
p

γ− γ




=

5 (1.4 1) / 1.4
1



 = 1.584

T 2 = 293 × 1.584 = 464 K
Now,

ηcompressor =^21
21

(T T )
(T′ T )



= 0.85

0.85 =
2

(464 293)
(T′ 293)



T 2 ′ = 494 K
For isentropic expansion process 3 – 4,

4
3

T
T =

(1)/
4
3

P
P

γ− γ




=

1 (1.4 1) /1.4
4.9

−




= 0.635

T 4 = 953 × 0.635 = 605 K

Now, ηturbine =

34
34

(T T )
(T T )

− ′
− = 0.80

0.85
0.80

=^4

(953 T )
(953 605)

− ′

3

5 b

ar
4.^9

ba

r

1 b

ar

2 2 ′

(^2931)
953
T(K)
4
4 ′
s
Fig. 9.31

Free download pdf