304 POWER PLANT ENGINEERING
(4) The thermal efficiencies of the actual and ideal cycle
(5) The required airflow rate.
Solution. T 1 = 273 + 20 = 293 K
T 3 = 273 + 850 = 1123 KT 2 a = T 1(1)/
2
1P
Pγ− γ
= 293.(4.28)0.2857 = 443.9 KSimilarly T 4 a = 0.28571123
(4.28)= 741.25 KNow ηcompressor =21 1
21(T T )
(T T )a −
−ηturbine =^34
34(T T )
(T T )a−
−T 2 =^121
compressorT(T T)+−a
η=293 (443.9 293)
0.8+−
= 481.6 KT 4 = T 3 – ηturbine (T 3 – T 4 a)
= 1123 – 0.8(1123 – 741.25) = 817.6 K
(2) and (3) specific work of compressor = Cp (T 2 – T 1 )
= 1.005(481.6 – 293) = 189.54 kJ/kg
Specific work of turbine = 1.005 (T 3 – T 4 )
= 1.005(1123 – 817.6) = 306.93 kJ/kg
Net work = 306.93 – 189.54 = 117.4 kJ/kg
(4) Thermal efficiency (ηt) of ideal cycle,ηt = (1)
2
111
P
Pγ− γ−
= 1 – 0.66 = 34%Thermal efficiency of actual cycle,ηt =(Heat supplied-Heat rejected)
Heat supplied=32 41
32{C (T T ) C (T T )}
{C ( T T )}pp
p−− −
− = 1 –41
32(T T )
(T T )−
−= 1 –(817.6 293)
(1123 481.6)−
−= 1 – 0.818 = 18.20%(5) Air flow rate =3600
net work output in kJ/kgkg/kW-hr.Iφ2a^2
1434aFig. 9.35