2.62 I FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICSAlgebra
SYMMETRIC MATRIX
Any matrix A is called to be symmetric matrix if A’ = AExamplea b c
A^35 , A b d e(^47) c e f
= =
SKEW SYMMETRIC MATRIX
Any matrix A is called to be skew symmetric if A’ = -AExample
0 4 0 b c
A 4 0 , A b 0 c
c e 0
= = −
−
− −
Example 106 : Find A + A’ whereA^25
7 8
=
& Prove A + A’ is symmetricSolution: (^) A+A '= 72 85 + 52 78
4 12
12 16
=
Let B=12 16^412
(∴B = A + A’)
B’=12 16^412
= B
So, B =A+A’, is symmetric matrixExample 107 : Find A – A’ where3 2 5
A 4 7 6
8 2 9
=
& Prove A – A’ is skew symmetric.Solution:A – A’3 2 5 3 4 8
4 7 6 2 7 2
8 2 9 5 6 9
=^ −^
(^)
0 2 3
2 0 4 B(say)
3 4 0