QuantumPhysics.dvi

(Wang) #1

the above relation becomes,


e^2 iδℓ(k)=−
h∗ℓ(kb)
hℓ(kb)

(12.106)

The phase shifts for the lowest values ofℓmay be computed explicitly, using the expressions for
the corresponding Hankel functions,


h 0 (ρ) = −i

eiρ
ρ

h 1 (ρ) = −i
eiρ
ρ^2
(1−iρ)

h 2 (ρ) = −i
eiρ
ρ^3

(
−3 + 3iρ+ρ^2

)
(12.107)

As a result, we have


e^2 iδ^0 (k) = e−^2 ikb
e^2 iδ^1 (k) = e−^2 ikb×
1 +ikb
1 −ikb

e^2 iδ^2 (k) = e−^2 ikb×
− 3 − 3 ikb+k^2 b^2
−3 + 3ikb+k^2 b^2

(12.108)

or taking the logs,


δ 0 (k) = −kb
δ 1 (k) = −kb+ Arctg(kb)

δ 2 (k) = −kb+ Arctg

( kb
1 −k^2 b^2 / 3

)
(12.109)

Note that in the low momentum limit,kb→0, one may obtain an approximate result valid for all
ℓ, using the asymptotic expansions of the spherical Bessel functions,


jℓ(kb) = Re(hℓ(kb))∼
(kb)ℓ
(2ℓ+ 1)!!

nℓ(kb) = Im(hℓ(kb))∼−

(2ℓ−1)!!

(kb)ℓ+1

(12.110)

Sincejℓ(kb)≪nℓ(kb) in this limit, we find that


δℓ(k)∼
jℓ(kb)
nℓ(kb)

∼−

(kb)^2 ℓ+1
(2ℓ+ 1)!!(2ℓ−1)!!

(12.111)

Thus, forkb≪1, it makes sense to neglectℓ≥1 in the low momentum limit, and we find


σtot∼

4 π
k^2
sin^2 δ 0 ∼ 4 πb^2 (12.112)
Free download pdf