the above relation becomes,
e^2 iδℓ(k)=−
h∗ℓ(kb)
hℓ(kb)
(12.106)
The phase shifts for the lowest values ofℓmay be computed explicitly, using the expressions for
the corresponding Hankel functions,
h 0 (ρ) = −i
eiρ
ρ
h 1 (ρ) = −i
eiρ
ρ^2
(1−iρ)
h 2 (ρ) = −i
eiρ
ρ^3
(
−3 + 3iρ+ρ^2
)
(12.107)
As a result, we have
e^2 iδ^0 (k) = e−^2 ikb
e^2 iδ^1 (k) = e−^2 ikb×
1 +ikb
1 −ikb
e^2 iδ^2 (k) = e−^2 ikb×
− 3 − 3 ikb+k^2 b^2
−3 + 3ikb+k^2 b^2
(12.108)
or taking the logs,
δ 0 (k) = −kb
δ 1 (k) = −kb+ Arctg(kb)
δ 2 (k) = −kb+ Arctg
( kb
1 −k^2 b^2 / 3
)
(12.109)
Note that in the low momentum limit,kb→0, one may obtain an approximate result valid for all
ℓ, using the asymptotic expansions of the spherical Bessel functions,
jℓ(kb) = Re(hℓ(kb))∼
(kb)ℓ
(2ℓ+ 1)!!
nℓ(kb) = Im(hℓ(kb))∼−
(2ℓ−1)!!
(kb)ℓ+1
(12.110)
Sincejℓ(kb)≪nℓ(kb) in this limit, we find that
δℓ(k)∼
jℓ(kb)
nℓ(kb)
∼−
(kb)^2 ℓ+1
(2ℓ+ 1)!!(2ℓ−1)!!
(12.111)
Thus, forkb≪1, it makes sense to neglectℓ≥1 in the low momentum limit, and we find
σtot∼
4 π
k^2
sin^2 δ 0 ∼ 4 πb^2 (12.112)